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Abstract—The role that side information plays in improving the
exact recovery threshold in the stochastic block model (SBM) has
been studied in many aspects. This paper studies exact recovery
in n node balanced binary symmetric SBM with side information,
given in the form of O(logn) i.i.d. samples at each node. A sharp
exact recovery threshold is obtained and turns out to coincide
with an existing threshold result, where no balanced constraint
is imposed. Our main contribution is an efficient semi-definite
programming (SDP) algorithm that achieves the optimal exact
recovery threshold. Compared to the existing works on SDP
algorithm for SBM with constant number of samples as side
information, the challenge in this paper is to deal with the number
of samples increasing in n.

I. INTRODUCTION

The stochastic block model (SBM) [1], also known as the
planted partition model, is a statistical model that admits neat
theoretical analysis and efficient algorithms while capturing
some key features exhibited in large data networks, such
as social, biological, and computer networks [2]. The SBM
describes a graph of n nodes, partitioned into multiple com-
munities. Each edge in the graph exists independently with a
probability determined by the communities the two nodes on
the edge belong to. The goal is to recover the community each
node belongs to, based on one instance of the graph edges.
While there are several levels of recovery defined and studied
(see [3] for a comprehensive survey), in this paper we focus on
the exact recovery, which aims to recover all the communities.

For exact recovery in the SBM, a more interesting regime
is when the edge connecting probabilities are in the order
of O( logn

n ), in which circumstance there are phase transition
phenomena for the exact recovery problem. The tight threshold
on the exact recovery in this setting was not established until
the work of [2], [4], where efficient and optimal algorithms
based on semi-definite programming (SDP) were also pro-
vided. The results in [2], [4] were generalized in [5] where
the sharp threshold for multiple communities with asymmetric
edge connecting probabilities is derived, and in [6], where
optimal SDP algorithms for multiple communities and two
communities with unequal community sizes are given.

While the SBM focuses on graphical data only, it is natural
to study the benefit of additional local data at the nodes,
referred to as side information, to the exact recovery in the
SBM. Such setting arises in applications where multi-modal
data are observed. For example, in a social network, not only

the interactions among people, but also the profile of each indi-
vidual can be collected. It has been shown in many studies that
side information such as node attributes or features [7], [8], [9]
can assist the community detection tasks. For exact recovery in
the SBM with side information, the work of [10] generalized
[5] and derived a sharp threshold for exact recovery in the
SBM with side information, given in the form of log n data
samples at each node, drawn identically and independently
according to a probability distribution determined by the
community the node belongs to. The community belongings
are described by node labels, which are i.i.d. according to a
probability distribution. The work of [11], [12], [13], [14],
[15] considered variations where side information is given as
partial revealed labels, noisy labels, or latent variables. SDP
algorithms were presented to achieve the sharp threshold in
[11], [14], [15].

In this paper, we consider balanced binary symmetric SBM
with side information in the form of O(log n) i.i.d. node
samples, drawn according to a distribution determined by the
community the node belongs to. The balanced property in this
paper means that the two communities in the graph have equal
sizes. The setting in this paper can be regarded as a special
case of that in [10], with the difference that each node belongs
to any one of the two communities with probability 1

2 in [3],
while a balanced constraint is imposed in this paper.

The contributions of this paper are as follows. First, we
derived a sharp threshold for the balanced SBM with side
information. It turns out that the threshold in this paper
coincides with that of [10] for the special case of SBM with
side information and without balanced constraint. Our major
contribution is an SDP based algorithm that achieves the
threshold with high probability. Different from the SDP algo-
rithms proposed in [11], [14], [15], where the side information
consists of a constant number of samples, our SDP algorithm
deals with cases where the number of samples is of order
O(log n). Our SDP algorithm is a nontrivial generalization
of the SDP algorithm in [2] where a set of row and column
constraints are imposed, to deal with the scaling of the number
of samples. This poses challenges in analyzing the optimality
of the proposed SDP algorithm, since the dual problem of the
SDP relaxation becomes more complex.

The paper is organized as follows. In Section II, we in-
troduce the model and present some definitions and lemmas



needed throughout the paper. Section III presents a sharp
bound on exact recovery. In Section IV, we provide an
SDP algorithm that achives the optimal threshold. Section V
provides simulation results for the SDP algorithm. Section VI
concludes the paper.

II. PRELIMINARIES

A balanced binary symmetric SBM is defined by a random
graph with n nodes {1, . . . , n} and edges Z = {Zi,j}1≤i<j≤n,
where Zi,j = 1 if nodes i and j are connected with an edge and
Zi,j = 0 otherwise. Each node i ∈ {1, . . . , n} is associated
with a label Yi ∈ {±1} such that the label Y = (Y1, . . . , Yn) is
uniformly distributed over the space {Y :

∑n
i=1 Yi = 0}. The

edges {Zi,j}1≤i<j≤n are independently distributed Bernoulli
random variables, where Zi,j = 1 with probability p = a logn

n
for nodes i, j with the same labels, i.e., Yi = Yj , and Zi,j = 1
with probability q = b lognn if Yi 6= Yj . In this paper, it is
assumed that a > b.

A balanced binary symmetric SBM with side information
(SBMSI) is a generalization of the balanced SBM. In addition
to the graph Z and the labels Y , each node i has m = γ log n
data samples Xi

j , i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, that
are drawn identically and independently from distribution
P0 if Yi = 1 and from distribution P1 if Yi = −1.
Note that the data samples Xi

j , j ∈ {1, . . . ,m} are in-
dependent from {Zi,j}1≤i<j≤n given the label Yi for any
i ∈ {1, . . . , n}. Hence, the joint probability distribution of
({Zi,j}1≤i<j≤n, {Xi

j}1≤i≤n,1≤j≤m) conditioned on Y is

P (x = {xij}1≤i≤n,1≤j≤m, z = {zi,j}1≤i<j≤n|(y1, . . . , yn))

=
∏

1≤i,j≤n

P (zi,j |yi, yj)
n∏
i=1

m∏
j=1

P (xij |yi), (1)

where

P (zi,j = 1|yi, yj) =

{
p if yi = yj

q if yi 6= yj
,

and

P (xij |yi) =

{
P0(xij) yi = 1

P1(xij) yi = −1

The conditional probability distribution
P ({xij}1≤i≤n,1≤j≤m, {zi,j}1≤i<j≤n|y1, . . . , yn) is
determined by parameters n, p, q, P0, and P1. Hence,
the SBMSI is denoted as SBMSI(n,m, p, q, P0, P1). In
SBMSI(n,m, p, q, P0, P1), the goal is to recover the
unknown labels Y , given the graph Z and the data samples
X . In this paper, we consider exact recovery of Y , which is
defined as follows.

Definition 1 (Exact Recovery for SBMSI(n,m, p, q, P0, P1)).
Let (Z = {Zi,j}1≤i<j≤n, Y,X = {Xi

j}1≤i≤n,1≤j≤m) be a
graph Z, node labels Y , and node data samples X be drawn
from the distribution defined by SBMSI(n,m, p, q, P0, P1).
Exact recovery is solvable if there exists an algorithm that
takes (Z,X) as inputs and outputs Ŷ = Ŷ (Z,X) such that the
error probability Pe := P (Ŷ 6= Y ) goes to 0 as n increases.

The following definition will be used throughout this paper
and is a special case of the definition in [10]. Define I+
to be the Chernoff information between Pois(a2 ,

b
2 ) × P0

and Pois( b2 ,
a
2 ) × P1 where Pois(·, ·) represents the bivariant

Poisson distribution.
By computing the Karush–Kuhn–Tucker (KKT) conditions,

we have the following lemma.

Lemma 1. For an SBMSI(n,m, p, q, P0, P1), let

I1 = min
P

X̃1

γD(pX̃1
||P0) +

1

2
g(a, b, 2ε), where

ε = γ
D(PX̃1

||P1)−D(PX̃1
||P0)

log a/b
(2)

g(a, b, ε) , a+ b−
√
ε2 + 4ab+ ε log

ε+
√
ε2 + 4ab

2b
(3)

and

I2 = min
P

X̃2

γD(pX̃2
||P1) +

1

2
g(a, b, 2ε), where

ε = γ
D(pX̃2

||P0)−D(PX̃2
||P1)

log a/b
. (4)

Then, we have that I1 = I2 = I+.

Proof. Using the results from Section 3 of [10], we can write
I+ explicitly as follows

I+ =
λ

2
(a1−λbλ − b1−λaλ) log

b

a
+
a+ b

2

− 1

2
(a1−λbλ + b1−λaλ) + γDKL(pλ||p0) (5)

where λ is chosen to minimize

a1−λbλ + b1−λaλ + 2γ log(
∑
x∈X

p1−λ0 (x)pλ1 (x)) (6)

and pλ is defined as

pλ =
p1−λ0 (x)pλ1 (x)∑
x∈X p

1−λ
0 (x)pλ1 (x)

. (7)

We show that I1 = I+ as an example. The other part I2 = I+
can be proved similarly. We use Lagrange multiplier to solve
(2). Let

L(pX̃1
, ε, λ) = γD(pX̃1

||p0) +
1

2
g(a, b, 2ε)

− λ(ε log
a

b
− γD(pX̃1

||P1) + γD(pX̃1
||P0))

It is equivalent to minimize (1−λ)D(pX̃1
||P0)+λD(pX̃1

||P1),

from which we get pX̃1
(x) = pλ(x). From

∂L(p
X̃1
,ε,λ)

∂ε = 0
and taking (7) into (2), we get

λ log
a

b
= log

ε+
√
ε2 + ab

b

ε log
a

b
= γ

∑
x∈X p

1−λ
0 (x)pλ1 (x) log p0(x)

p1(x)∑
x∈X p

1−λ
0 (x)pλ1 (x)



After cancelling ε from the above two equations, we can get
a single equation for λ:

log a
b

2
(aλb1−λ − a1−λbλ) + γ

∑
x∈X p

1−λ
0 (x)pλ1 (x) log p1(x)

p0(x)∑
x∈X p

1−λ
0 (x)pλ1 (x)

= 0

which is the derivative of (6). Then by simple computation we
have I+ = I1.

III. SHARP THRESHOLD FOR BALANCED SBMSI
In this section we present a sharp closed form threshold

for exact recovery in the balanced SBMSI. The threshold
coincides with the result in [10] for SBMSI without balanced
constraints.

Theorem 1. For a balanced SBMSI(n,m, p = a logn
n , q =

b lognn , P0, P1), exact recovery is solvable if

I+ > 1, (8)

and is not solvable if I+ < 1, in which case, the error
probability Pe goes to 1.

Remark 1. From Lemma 1 it can be seen that when γ in-
creases, in which case the number of samples becomes larger,
I+ increases. Hence, more samples facilitate the recovery of
communities.

A. Proof of Theorem 1

The achievability part can be proved by our SDP algorithm,
the details of which will be given in Section IV. We show that
exact recovery is not possible if I+ < 1.

Let S1 and S2 be the set of nodes with labels 1 and −1,
respectively. For a node i and a node set S ⊂ {1, . . . , n},let
E(i, S) be the number of edges between i and nodes in S.
By similar arguments to the ones in [2], it can be shown that
with high probability, there exists a subset H1 ⊂ S1 of size
n

log3 n
and a node i1 ∈ H1, such that

m∑
j=1

log
P1(xi1j )

P0(xi1j )
≥ log

p(1− q)
q(1− p)

( log n

log log n
+ 1

+ E(i1, S1\H1)− E(i1, S2)
)
, (9)

if I1 < 1, where I1 is defined in (2). Similarly, if I2 < 1,
where I2 is defined in (4), there exists a subset H2 ⊂ S2 of
size n

log3 n
and a node i2 ∈ H2, such that

m∑
j=1

log
P0(xi2j )

P1(xi2j )
≥ log

p(1− q)
q(1− p)

( log n

log log n
+ 1

+ E(i2, S2\H2)− E(i2, S1)
)
, (10)

with high probability. Summing up (9) and (10), we obtain
m∑
j=1

log
P1(xi1j )

P0(xi1j )
+

m∑
j=1

log
P0(xi2j )

P1(xi2j )

≥ log
p(1− q)
q(1− p)

(
2

log n

log log n
+ 2 + E(i1, S1\H1)

+ E(i2, S2\H2)− E(i1, S2)− E(i2, S1)
)
. (11)

Note that if (11) holds, then
m∑
j=1

log
P1(xi1j )

P0(xi1j )
+

m∑
j=1

log
P0(xi2j )

P1(xi2j )

≥ log
p(1− q)
q(1− p)

(E(i1, S1\{i1}) + E(i2, S2\{i2})

− E(i1, S2\{i2})− E(i2, S1\{i1})). (12)

Hence, with high probability, (12) holds if I1 < 1 and I2 < 1.
According to Lemma 1, this occurs when I+ < 1. According
to (1) and the fact that Y is uniformly distributed, Eq. (12) is
equivalent to the fact that the likelihood P (X,Z|(Y1, . . . , Yn))
(defined in (1)) with Yi1 = −1, Yi2 = 1 is larger than the
likelihood P (X,Z|(Y1, . . . , Yn)) with Yi1 = 1, Yi2 = −1,
which results in recovery failure. Therefore, we conclude that
a recovery failure occurs with high probability, if I+ < 1.

IV. SDP RELAXATION

In this section, we propose a semi-definite programming
based relaxation to find the maximum likelihood estimate of
the labels Y . Note that the ML estimate of the labels Y is NP-
hard while SDP formulation can be implemented efficiently
using interior point method or alternating direction method
[16]. Our SDP algorithm finds the true label Y ∗ with proba-
bility approaching 1, if γD1/2(p0||p1)+(

√
a−
√
b)2 > 2. The

SDP problem can be solved using various efficient iterative
schemes.

Let S1(Y ) and S2(Y ) be the sets of nodes with label 1 and
−1, respectively, given Y . According to (1), the log likelihood
of Y is given by

m∑
j=1

[
∑

i∈S1(Y )

logP1(Xi
j) +

∑
i∈S2(Y )

logP0(Xi
j)]

+
∑

i,j∈S1(Y ),i<j

[zi,j log p+ (1− zi,j) log(1− p)]

+
∑

i,j∈S2(Y ),i<j

[zi,j log p+ (1− zi,j) log(1− p)]

+
∑

i∈S1(Y ),j∈S2(Y )

[zi,j log q + (1− zi,j) log(1− q)]. (13)

It can be verified that maximizing (13) over Y ∈ {±1}n is
equivalent to solving the following optimization problem

max
v

hT v +
1

4
vTBv

s.t.1Tnv = 0 and vi ∈ {±1} (14)

where h is an n-dimensional vector with entry hi =
1

log
p(1−q)
q(1−p)

∑m
j=1 log

P0(x
i
j)

P1(xi
j)

for i ∈ {1, . . . , n} and the n × n
matrix B is defined as

Bij =

{
1, if i is connected to j,
−1, otherwise.

(15)

for i, j ∈ {1, . . . , n}.



Let v∗ be the optimal solution to (14) and V ∗ =
(1, v∗)(1, v∗)T , where (1, v∗) is a (n+ 1)-dimensional vector
obtained by concatenating 1 and v∗. Then, the optimal value
of (14) equals 1

2Tr(B̃V
∗), where

B̃ =

(
0 hT

h 1
2B

)
. (16)

We wish to show that V ∗ is the unique optimal solution to the
following problem.

max
V

Tr(B̃V )

s.t. Vii = 1,

V � 0,
n+1∑
j=2

(Vij + Vji) = 0, ∀i ∈ {1, . . . , n+ 1}. (17)

Note that here we use n + 1 constraints in the last two lines
of (17) to describe the balanced property of the labels. This
is important in deriving the optimality and uniqueness of V ,
which will be proved in the following theorem. The theorem
shows that our SDP relaxation achieves exact recovery with
high probability, as long as the recovery condition is met.

Theorem 2. If I+ > 1, then with high probability, the optimal
solution V ∗ to (17) is unique and given by (1, y∗)(1, y∗)T ,
where y∗ is the true labeling of the nodes.

Proof of Theorem 2. Consider the dual problem of (17)

min
a1,...,an+1

n+1∑
i=1

ai

s.t. diag{a1, . . . , an+1}+ Ξ− B̃ � 0, (18)

where the (n+ 1)× (n+ 1) symmetric matrix Ξ is defined as

Ξij =

{
λ1, i = 1 or j = 1, and i 6= j

λi + λj , i, j ∈ {2, . . . , n+ 1}
, (19)

Let g = y∗ = (1, . . . , 1,−1, . . . ,−1) be the true labels of the
nodes, i.e., the first and second half of the nodes are labeled
by 1 and −1, respectively. As similarly mentioned in [2], the
optimality and uniqueness of the solution (1, g)(1, g)T to (17)
is guaranteed by the following conditions:

(a) (1, g)(1, g)T is a feasible solution to the primal problem
(14).

(b) There exists a feasible solution (a1, . . . , an+1,
λ1, . . . , λn+1) to (18), such that

∑n+1
i=1 ai =

Tr((1, g)(1, g)T B̃).
(c) (diag{a1, . . . , an+1}+ Ξ− B̃)(1, g) = 0.
(d) The second smallest eigenvalue of

diag{a1, . . . , an+1}+ Ξ− B̃ is greater than 0.
Condition (a) holds by definition. It suffices to choose
(a1, . . . , an+1, λ1, . . . , λn+1) that satisfies conditions (b), (c)
and (d). Let µ = 1

n1
T
nh and λ = −µ/n. Specify

(a1, . . . , an+1, λ1, . . . , λn+1) as follows

λ1 = µ+ λ, and λi+1 = giλ+ λ, i ∈ {1, . . . , n}

Then, from condition (c) we have that

a1 = hT g

ai+1 = (hi − λ)gi +
1

2
diag{BggT }i, i = 1, . . . , n (20)

It can be verified that
∑n+1
i=1 ai = 2hT g+ 1

2g
TBg, and hence

condition (b) holds. Hence it suffices to prove that

diag({a1, . . . , an+1}) + Ξ− B̃

=

(
hT g −hT + (µ+ λ)1Tn

−h+ (µ+ λ)1n Ξn

)
� 0, (21)

where

Ξn = diag(hgT +AggT − λ1ngT )

+ (
1

2
+ 2λ)Jn −A+ 2λΞ′, (22)

1n is the all 1’s vector, Jn is the all 1’s matrix, and In is
the identity matrix. The matrix A = (B + Jn − In)/2 is the
adjacency matrix of the graph. The matrix Ξ′ is given by Ξ′ij =
gi + gj .

In the following we show that Ξn is positive definite.
Then according to condition (c) and the Cauchy’s Interlacing
Theorem [17], condition (d) holds. Then, the proof is done.

We show that xTΞnx > 0 for any vector x ∈ Rn satisfying
‖x‖ = 1. Decompose x as x = β√

n
g +

√
1− β2g⊥, where

gT g⊥ = 0, β ∈ [0, 1], and ‖g⊥‖ = 1. Then, we have that

xTΞnx =
β2

n
gTΞng +

β√
n

√
1− β2gTΞng

⊥

+ (1− β2)(g⊥)TΞng
⊥. (23)

In the next we derive lower bounds to the three terms in the
right hand side of (23). For the first term, we have that

gTΞng = gT (h− λ1n) = gTh

Since E[gTh] is a positive number of order O(n log n) , by
Sanov’s theorem or Chernoff bound, the probability P (gTh <
0) decreases exponentially in n. Hence, with high probability,
the first term gTΞng is positive.

For the second term, let h̃ = Ξng = (n − 1)λ1n + h,
then gTΞng

⊥ = h̃T g⊥ ≥ −‖h̃− 1
n (h̃T g)g‖, where the norm

‖h̃− 1
n (h̃T g)g‖ satisfies

‖h̃− 1

n
(h̃T g)g‖2 = ‖h̃‖2 − 1

n
(h̃T g)2.

Let ĝ1 = 1
2 (g + 1n) and ĝ2 = 1

2 (−g + 1n). Using the fact
that h̃T1n = µ, we have

‖h̃‖2

n
− (

1

n
h̃T g)2

=
‖h̃‖2

n
− 2

(h̃T ĝ1)2

n2
− 2

(h̃T ĝ2)2

n2
+

(h̃T1n)2

n2

= 2

∑
i<j,i,j∈S1

(h̃i − h̃j)2 +
∑
i<j,i,j∈S2

(h̃i − h̃j)2

n2
+
µ2

n2

= I1 + I2 +
µ2

n2
.



where Ij =

∑
i∈Sj

h2
i

n − 2
(hT ĝj)

2

n2 for j ∈ {1, 2}, and S1

and S2 denotes the sets of nodes with label 1 and −1,
respectively. Denote E[hi] = mDj ,Var[hi] = mD̄j ,E[h2i ] =
Var[hi]+E2[hi] = mD̄j+m2D2

j ,Var[h2i ] ≤ m4C̄j for i ∈ Sj
and j ∈ {1, 2}. Then Dj , Cj , j ∈ {1, 2} are constants. Using
Chebyshev’s inequality, we have that

P (
∣∣∣∑i∈Sj

h2i

n
− 1

2
(mD̄j +m2D2

j )
∣∣∣ ≥ log n) ≤ m4C̄j

2n log2 n

P (
∣∣∣hT ĝj
n
− m

2
Dj

∣∣∣ ≥ log−1 n) ≤ m log2 nD̄j

2n

for j ∈ {1, 2}. Hence, with probability 1− n−1−o(1),

Ij ≤
1

2
mD̄j +

1

2
m2D2

j + log n− 2(
1

2
mDj − log−1 n)2

=O(log n)

for j ∈ {1, 2}. Therefore, we have that

1√
n
gTΞng

⊥ ≥ −

√
‖h̃‖2
n
− (

1

n
h̃T g)2 = O(

√
log n)

For the last term (g⊥)TΞng
⊥, by (22) and the fact that

(g⊥)T g = 0, we have that

(g⊥)TΞng
⊥

=(g⊥)T diag(−λ1ngT + hgT +AggT )g⊥ + p

+
1

2
(1− p− q + 2λ)(g⊥)TJng

⊥ − (g⊥)T (A− E[A])g⊥,

where we use the fact that E[A] = p−q
2 ggT + p+q

2 Jn − pIn.
Note that p, q, and λ are o(1) terms and that (g⊥)TJng

⊥ ≥ 0.
By Theorem 5.2 of [18], with probability 1−n−r, λmax(A−
E[A]) ≤ c

√
log n for some positive constant r and c. Hence,

we have that

(g⊥)TΞng
⊥ ≥ min

i
{(−λ+ hi)gi + λ+ gi(Ag)i} − c

√
log n

(24)

We now show that with high probability,

(−λ+ hi)gi + λ+ gi(Ag)i − c
√

log n ≥ 0 (25)

for i ∈ {1, . . . , n}. For gi = 1, the term gi(Ag)i can be
written as Z1 − Z2, where Z1 ∼ Binom(n2 − 1, a logn

n )

and Z2 ∼ Binom(n2 ,
b logn
n ) follow binomial distributions.

The term hi = m
D(P

X̃i
||P1)−D(P

X̃i
||P0)

log a/b , where PX̃i
is the

empirical distribution of samples {Xi
j}mj=1 at node i. Then,

we have the following lemma, which is a slight generalization
of Lemma 8 in [2] and can be proved using Chernoff bound.

Lemma 2. Suppose m > n,Z ∼ Binom(m, b lognn ), X ∼
Binom(m, a logn

n ). For t ≥ m
n (b− a), we have

P (Z −X ≥ t log n)

≤ exp(−m
n

log n · (g(a, b,
n

m
t) +O(

log n

n
))) (26)

where g(a, b, ε) is defined in (3).
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Fig. 1. Comparison of different thresholds and with empirical recovery result
by SDP

According to Lemma 2 and Sanov’s theorem, if gi = 1,
the probability that (25) does not hold is upper bounded by
n−I1+o(1) for any i, where I1 is defined in (2). By the union
bound, the probability that there exists an i that violates (25)
is at most n−I1+1+o(1), which fades to zero as I1 = I+ > 1.
Similarly, the probability that an i satisfying gi = −1 violates
(25) decays if I2 = I+ > 1. Therefore, with high probability,
(g⊥)TΞng

⊥ ≥ 0 when I+ > 1, and Theorem 2 holds.

V. SIMULATION RESULTS

Fig. 1 shows the empirical probability of successful recovery
of the SDP algorithm for the SBM with side information. We
fix n = 300 and the number of trials to be 20. The number of
samples is chosen as m = 10 for Bern(0.2) versus Bern(0.8).
Then at each trial and for fixed a and b, we check how many
times each method succeeds. Dividing by the number of trials,
we obtain the empirical probability of success with respect to
the exact recovery metric. The blue curve corresponds to the
threshold

√
a−
√
b =
√

2 while the red curve corresponds to
the threshold I+ > 1. It can be seen from the figure that the
recovery threshold for SBM with side information matches the
red line I+ > 1.

VI. CONCLUSION

In this paper, we obtained a sharp close-form exact recovery
condition for a balanced two-community symmetric SBM with
side information. Our result provides insight on the number of
node samples to achieve exact recovery. We also proposed a
semidefinite programming based algorithm that achieves the
threshold with high probability. It will be interesting to see
if the SDP algorithm in this paper can be extended to more
general cases.
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