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Abstract—Side information improves the accuracy in commu-
nity detection problems. While experimental results demonstrate
the superior performance of many detection methods based on
both the node attributes and graph structure, the question of the
fundamental limit of the error rate for exact recovery remains
open. In this paper, we obtain the asymptotic optimal error
rate in the sense of exact recovery for a special two-community
symmetric stochastic block model (SSBM) with side information
consisting of multiple features. Our result provides insight on the
number of features and nodes in the graph needed for community
detection.

I. INTRODUCTION

In network analysis, community detection assigns discrete
labels to each node of the graph based on the observation
of graph edges. In addition to the edge information, extra
node features are often available in real-world applications
in the form of graph signal [1], noisy labels [2], or feature
vectors [3]. Combining the edge and node information, it is
expected that better accuracy can be achieved for community
detection problems. Within this context, a central problem is
to investigate the gain that the extra information brings to
the detection problem, compared to the case where only edge
observation is available.

To get theoretical insights into such a problem, it is often
assumed that the graph is generated from a simple probabilistic
model called Stochastic Block Model (SBM), in which the
probability of edge existence is higher within the community
than that between different communities [4]. For the sole
presence of SBM, as the size of community grows, the error
rate of many algorithms decreases to zero in both the exact
recovery and weak recovery metric [5], [6]. For the special
case of a two-community model, the optimal error rate for
weak recovery has been obtained as n−(

√
a−
√
b)2/2 where a, b

are parameters of SBM [7].
With the presence of extra node information, the condition

of exact recovery is improved and generalized [8]. However,
previous study does not exactly quantify the optimal error
rate of SBM with side information. This paper will fill the
gap by considering a model of two-community SBM with
extra node feature vectors. We have obtained that the exact
recovery error decreases polynomially in a rate quantified by
γD1/2(p0||p1) + (

√
a −

√
b)2 − 2. In this expression, the

contribution of side information to the error rate is coded
in Rényi divergence. The optimal error rate on the extended

model is achieved by maximum likelihood method, which
is theoretically justified but can not be applied directly in
practical problems without approximation. For many other
implementable algorithms like variants of SDP relaxation
and spectral clustering, their error rate decreases to zero but
may not achieve the fundamental limit given in this paper.
Nevertheless, the study of the optimal error rate provides a
unified way to compare different algorithms in the experiment
level.

This paper is organized as follows. In Section II, we review
the previous works which are related with ours. In Section III,
we introduce the mathematical model. Then in the following
two sections, we present our error rate results for two different
parameter regimes respectively. Finally the article concludes
in Section VI.

The following notations are used throughout this paper:
the random undirected graph G is written as G(V,E) with
vertex set V and edge set E; V = {1, . . . , n} =: [n];
X is the alphabet set of the random variable X; m is the
number of samples generated at each node; Bern(p) and
Binom(n, p) represent Bernoulli and Binomial distribution
respectively; f(n) = ω(g(n)) (or = o(g(n))) means that
limn→∞ f(n)/g(n) = ∞ (or = 0); 1[A] is the indicator
function for the event A; Wn is the n-ary Cartesian power
of the set W ; The Hamming distance of two n-dimensional
vectors is written as dist(x, y) :=

∑n
i=1 1[xn 6= yn] for

x, y ∈ {±1}n.

II. RELATED WORKS

The model considered in this work extends the two-
community SBM in [9]. Specifically, we assume the extra
feature vectors of each node are independent samples, whose
distribution depends on the label of the node. This model
has been studied in Section V-B of [8], in which the number
of features m is required to be of the order log n for side
information to take effects. A general case of side information
is studied in [10] and the exact recovery condition is obtained,
which involves an optimization problem. We emphasize that
the SBM in Theorem 4 of [10] assumes that the node labels
are independently generated from Bern( 12 ) while the model
in this paper requires uniform distribution over the space
{Yi ∈ {±1}|

∑n
i=1 Yi = 0} where Yi is the label of the i-

th node. To distinguish the two models, we call the former



SBM with equal probability and the latter the SBM with equal
community size.

In previous researches of SBM, the recovery condition is
extensively studied, in which the error rate converges to zero
[11]. For SBM model with side information, we find the error
rate of SBM with equal community size constraint allows
close-form solution in this paper while the error rate for SBM
with equal probability remains an open problem.

Rényi divergence has been used in SBM in [7] to character-
ize the optimal error rate in weak recovery sense. In that study,
both the dense and sparse graph are considered. In this paper,
we consider the optimal error rate in exact recovery metric
and obtain similar results containing Rényi divergence in both
the two types of graphs for SBM with side information.

III. MATHEMATICAL MODELS

The two-community symmetric stochastic block model
(SSBM) is a special case of SBM, and we give the formal
definition of SSBM as follows:

Definition 1 (SSBM). Let 0 ≤ q < p ≤ 1 and V = [n].
The random vector Y = (Y1, . . . , Yn) ∈ {±1}n and random
graph G are drawn under SSBM(n, p, q) if

1) Y is drawn uniformly with the constraint that Y1+ · · ·+
Yn = 0 for Yi ∈ {±1};

2) There is an edge of G between the vertices i and j
with probability p if Yi = Yj and with probability q if
Yi 6= Yj; the existence of each edge is independent with
each other.

Sampling from SSBM, we can get a pair (Y,G) where each
feasible label Y = y has probability 1/

(
n
n/2

)
. Within this

probabilistic setting, the community detection task is to infer
Y from G. When additional node observations X are added,
we expect that better inference accuracy of Y is achieved
using (G,X). The additional node observation is called side
information, and we define it formally in the following model:

Definition 2 (SBMSI). Let (Y,G) be sampled from
SSBM(n, p, q), and Xi1, . . . , Xim are i.i.d. random variables
for i ∈ [n], whose probability density function p(x) is
determined by Yi as

p(x) =

{
p0(x) Yi = 1

p1(x) Yi = −1
(1)

We call the above generative model as SSBM with symmetric
side information (SBMSI) with parameter (n,m, p, q, p0, p1).

The node observations can be written concisely as {Xij |i ∈
[n], j ∈ [m]}. Besides, the graph G can be regarded as obser-
vations of edges, and we can denote the edge observations in
a similar way by using Zij := 1[{i, j} ∈ E(G)]. Using Xij

and Zij , the likelihood function for given Y is

p(x, z|Y = y) = p(z|y)
n∏
i=1

m∏
j=1

pσi
0 (xij)p

1−σi
1 (xij) (2)

where p(z|y) is the likelihood function for SSBM and σi =
(1+yi)/2. Based on (2), we can use the maximum likelihood
(ML) method to estimate Y :

Ŷ = argmax
y

p(x, z|Y = y)

s.t. yi ∈ {±1},
n∑
i=1

yi = 0 (3)

The estimator Ŷ , given by (3), is an ML estimator in restricted
parameter space. In contract, ML estimator for y ∈ {±1}n
(unrestricted parameter space) should be used for SBM with
equal probability. To study the performance of the ML estima-
tor, we need a metric of the error rate, whose formal definition
is given as:

Definition 3 (Error Rate of Exact Recovery for SBMSI).
Let (Y,Z,X) be sampled from SBMSI(n,m, p, q, p0, p1).
For an algorithm that takes (Z,X) as inputs and outputs
Ŷ = Ŷ (Z,X), we define its error rate of exact recovery as
Pe := P (Ŷ 6= Y ).

The above definition is slightly different from that of SBM
as the latter uses Ŷ 6= ±Y . When no side information is
available, we can only expect a recovery up to a global sign.
However, since p0 6= p1, the sign of Y can also be determined
when side information is in hand.

We make another remark that the exact recovery metric
imposes stricter requirement on the recovery algorithm than
its weak recovery counterpart, which uses E[dist(Ŷ , Y )]/n as
the error rate.

Below we analyze the exact recovery error of the max-
imum likelihood estimator Ŷ given by (3). Without edge
observations, the estimation is decomposed into n indepen-
dent hypothesis testing problems with the global constraint∑n
i=1 Yi = 0. In such case, Rényi divergence with order 1

2
is used to quantify the error exponent [12]. This information
theoretic quantity can be written as:

D1/2(p0||p1) = −2 log(
∑
x∈X

√
p0(x)p1(x)) (4)

With node observations, we divide our discussion into two
cases:

1) dense SBMSI: p, q are constant values;
2) sparse SBMSI: p = a log n/n, q = b log n/n and a, b

are constant values.
The recovery error rate for the first case is given in Section
IV while the latter case is analyzed in Section V.

IV. ERROR EXPONENT FOR DENSE SBMSI

Theorem 1. Let γ = m
n be a constant. If p, q are constant,

using maximum likelihood estimator (3), the error exponent of
exact recovery is given by:

− lim
n→∞

1

n
logPe = γD1/2(p0||p1)+D1/2(Bern(p)||Bern(q))

(5)



From Theorem 1, we see that the recovery error de-
creases in exponential rate. When γ = 0, Theorem 1 says
D1/2(Bern(p)||Bern(q)) is the error exponent for exact re-
covery. Since weak recovery differs from exact recovery
by a polynomial factor, D1/2(Bern(p)||Bern(q)) is also the
exponent for weak recovery, which has been obtained in [7].
Besides, assuming γ is an integer, the error exponent can be
regarded as the Rényi divergence between the joint distribution
p0 × · · · × p0︸ ︷︷ ︸

γ

×Bern(p) and p1 × · · · × p1︸ ︷︷ ︸
γ

×Bern(q). By in-

dependent conditions, we can decompose this divergence in
the summation form. Furthermore, the result of Theorem 1
requires m and n have the same order. When m = o(n), the
edge information takes dominate effects; when m = ω(n),
the side information dominates and the edge information is
negligible.

A. Proof of Theorem 1

We introduce some additional notations used throughout
this proof. Let |A|, Ac be the cardinality, complement of the
set A, respectively. For distributions p0 and p1, D(p0||p1) is
the Kullback-Leibler divergence. Let pBq

(z) = qz(1 − q)1−z
be the probability mass distribution for Bern(q). From type
theory, the set of possible types for m samples with alphabet X
is denoted as Pm. For any P ∈ Pm, the probability of the type
class T (P ) under distribution pi is denoted as Qmi (T (P )).

Let us consider P (Ŷ = Y |Y = y∗) for a certain labeling
of nodes y∗. Since Y is uniformly sampled, Pe = P (Ŷ =
Y |Y = y∗). If the ML in (3) fails to exactly recover y∗, then
there exists y 6= y∗ such that p(x, z|y) > p(x, z|y∗). Let Fk
denote the event when there are k pairs differences between
y and y∗.

Fk := {∃y ∈ {±1}n|dist(y, y∗) = 2k, p(x, z|y) > p(x, z|y∗)}
(6)

Since y is expected to satisfy the constraint
∑n
i=1 yi = 0,

dist(y, y∗) is only allowed to take even values. Taking log-
arithm on both sides of p(x, z|y) > p(x, z|y∗), we get the
equivalent inequality:

km∑
i=1

(
log

p1(x1i)

p0(x1i)
+ log

p0(x2i)

p1(x2i)

)
≥ log

p(1− q)
q(1− p)

k(n−2k)∑
i=1

(zi−z′i)

(7)
where x1i(x2i) are sampled from p0(p1) respectively, and

zi ∼ Bern(p), z′i ∼ Bern(q).
We denote the event described by (7) as Ak, and each Fk

can be regarded as the union of
(
n/2
k

)2
events of Ak for

different node indexes.
To obtain an upper bound of P (Ak), we further define

several empirical distributions as follows:

P (X̃j = u) =
1

km

km∑
i=1

1[xji = u] for u ∈ X , j = 1, 2

P (Z̃ = u) =
1

k(n− 2k)

k(n−2k)∑
i=1

1[zi = u], u ∈ {0, 1}

and Z̃ ′ is defined similarly. Then (7) is transformed as

m

[∑
x∈X

PX̃1
(x) log

p1(x)

p0(x)
+
∑
x∈X

PX̃2
(x) log

p0(x)

p1(x)

]
+ (n− 2k) ∑

z∈{0,1}

PZ̃(z) log
pBq (z)

pBp
(z)

+
∑

z∈{0,1}

PZ̃′(z) log
pBp(z)

pBq
(z)

 ≥ 0

(8)

When p, q are constant, using (8), P (Ak) can be estimated by
Sanov’s theorem: − 1

kn logP (Ak)→ θ∗k as n→∞ where

θ∗k = min
X̃1,X̃2,Z̃,Z̃′

γ(D(pX̃1
||p0) +D(pX̃2

||p1))+

(1− 2k

n
)(D(pZ̃ ||Bern(p)) +D(pZ̃′ ||Bern(q)))

s.t. (X̃1, X̃2, Z̃, Z̃
′) satisfy (8)

Using the Lagrange multiplier, we can get

pX̃1
(x) = c1p

1−λ
0 (x)pλ1 (x) pX̃2

(x) = c2p
1−λ
1 (x)pλ0 (x)

pZ̃(z) = c3p
1−λ
Bp

(x)pλBq
(z) pZ̃′(z) = c4p

1−λ
Bq

(x)pλBp
(z)

where c1, . . . , c4 are normalization coefficients for these dis-
tributions. The parameter λ is chosen such that (8) be-
comes equality, which leads to λ = 1

2 . Therefore, θ∗k =
γD1/2(p0||p1) + (1− 2k

n )D1/2(Bern(p)||Bern(q)). Denoting
C1 = γD1/2(p0||p1), C2 = D1/2(Bern(p)||Bern(q)) for
short, then P (Ak) ≤ exp(−knC1 − k(n − 2k)C2) for large
n. Using the union bound, we can control P (Fk) by

P (Fk) ≤
(
n/2

k

)2

P (Ak) (9)

and by
(
n
k

)
≤ (ne/k)k, we can further bound Pe above as

follows:

Pe ≤
n/4∑
k=1

(
n/2

k

)2

P (Ak)

≤
n/4∑
k=1

exp(−nf(k))

where f(k) = 2k
n log 2k

ne+k(C1+C2)− 2k2

n C2. By computing
f ′(x) = 2

n log 2x
n + C1 + C2 − 4C2x

n , 1 ≤ x ≤ n
4 . f ′(1) >

0, f ′(n4 ) > 0 ⇒ f ′(x) > 0 for 1 ≤ x ≤ n
4 . Therefore, f(x)

increases in the interval [1, n4 ], and f(k) ≥ f(1) for 1 ≤ k ≤
n
4 .

Pe ≤
n

4
exp(−nf(1)) = exp(−n(C1 + C2 + o(1))) (10)

On the other hand, Pe ≥ P (A1) = exp(−n(C1+C2+o(1))).
Finally we have − 1

n limn→∞ logPe = C1+C2, and the proof
of Theorem 1 is completed.



V. ERROR RATE FOR SPARSE SBMSI
In Section IV we discussed the exponential error rate for

dense SBMSI. In this section, we will present the polynomial
error rate for sparse SBMSI. This result is summarized in the
following theorem:

Theorem 2. Let γ = m
logn be a constant. If p = a log n/n

and q = b log n/n, using maximum likelihood estimator (3),
if

γD1/2(p0||p1) + (
√
a−
√
b)2 − 2 > 0 (11)

then the error probability of exact recovery is bounded by

Pe ≤ (
1

4
+ o(1))n−(γD1/2(p0||p1)+(

√
a−
√
b)2−2+o(1)) (12)

If the following condition

(
√
a−
√
b)2 − 2 > 3a1/3b1/3(a1/6 − b1/6)2 (13)

is satisfied, then we can show that Pe is lower bounded by

Pe ≥ (
1

4
+ o(1))n−(γD1/2(p0||p1)+(

√
a−
√
b)2−2+o(1)) (14)

Theorem 2 tells us that the side information X increases the
decay rate of error probability Pe quantified by γD1/2(p0||p1).
Under some parameter configurations specified in (13), the
quantity γD1/2(p0||p1) + (

√
a −
√
b)2 − 2 exactly describes

the error rate for the exact recovery problem of SBMSI.
We notice that when (13) is satisfied, so is (11). In such

case, the error rate is given by

− lim
n→∞

logPe
log n

= γD1/2(p0||p1) + (
√
a−
√
b)2 − 2

To obtain this error rate, we need a slightly stronger condition
(13) than the recovery threshold

√
a−
√
b >
√
2 for SSBM.

In addition, when p0 = p1, Theorem 2 gives the error rate of
maximum likelihood for SSBM. This corollary is summarized
as follows:

Corollary 1. Consider SSBM(n, a logn
n , b lognn ) with equal

community size. For ML algorithms, the exact recovery error
rate Pe satisfies

lim
n→∞

logPe
log n

= 2− (
√
a−
√
b)2 (15)

as long as (13) holds.

A. Proof of Theorem 2

We start from (8) to get the upper and lower bounds for
Pe. Firstly, we introduce the following lemma, which gives
the lower bound of P (A1) when p, q = O( lognn ).

Lemma 1. For event A1 specified in (7) with k = 1, we have
the following estimation

P (A1) ≥ exp(−(γD1/2(p0||p1) + (
√
a−
√
b)2 + o(1)) log n)

(16)

Proof of Lemma 1. When k = 1, the inequality (7) can be
rewritten as

∑n−2
i=1 (z

′
i − zi) ≥ ε where

ε :=
m

log a/b
·
[
D(PX̃1 ||P1)−D(PX̃1 ||P0)

+D(PX̃2 ||P0)−D(PX̃2 ||P1)
]
,

Let PX̃i1
and PX̃i2

follow the distribution P (X = x) =√
p0(x)p1(x)∑

x∈X

√
p0(x)p1(x)

, which makes ε = 0. For this special choice

of distribution PX̃i1
and PX̃i2

, using Sanov’s theorem, we
have that

P (A1) ≥
1

(m+ 1)2|X |
exp(−m(D(pX̃1

||p0) +D(pX̃2
||p1))

· P

(
n−2∑
i=1

(z′i − zi) ≥ 0

)

= exp(− log n(γD1/2(P0||P1) + o(1)))P (

n−2∑
i=1

(z′i − zi) ≥ 0).

From Lemma 4 from [11], P (
∑n−2
i=1 (z

′
i − zi) ≥ 0) is lower

bounded by n−(
√
a−
√
b)2+o(1). Therefore, (16) is obtained.

Lemma 2. Let p0, p1 be two probability distributions defined
on alphabet X , then the following inequality holds(∑

x∈X
p

1
3
0 (x)p

2
3
1 (x)

)3

≤

(∑
x∈X

√
p0(x)p1(x)

)2

(17)

Proof. Let f(x) = p
1
3
0 (x)p

1
3
1 (x), g(x) = p

1
3
1 (x), p =

3
2 , q = 3.

We can verify 1
p +

1
q = 1. By Hölder’s inequality:

(
∑
x∈X

f(x)g(x)) ≤ (
∑
x∈X

fp(x))
1
p (
∑
x∈X

gq(x))
1
q (18)

Since
∑
x∈X p1(x) = 1, (18) implies (17).

Proof of Theorem 2. Below we use Chernoff’s inequality to
give an upper bound of P (Ak): P (Ak) ≤ n−kθ

∗
k where θ∗k =

γD1/2(p0||p1) + (1− 2k
n )(
√
a−
√
b)2.

P (Ak) ≤ E

[
exp

(
s

km∑
i=1

(
log

p1(x1i)

p0(x2i)
+ log

p0(x2i)

p1(x2i)

))]

· E

exp
s log a

b

k(n−2k)∑
i=1

(z′i − zi)


(a)
= (

∑
x∈X

p1−s0 (x)ps1(x))
km(

∑
x∈X

p1−s1 (x)ps0(x))
km

· exp(k log n(1− 2k

n
)(−a− b+ asb1−s + bsa1−s + o(1)))

where (a) follows from independence condition. Choosing s =
1
2 , we then have P (Ak) ≤ n−k(θ

∗
k+o(1)).

When k ≥ n√
logn

, using Lemma 8 of [13], P (Fk) decreases
exponentially. The error probability for 2 ≤ k < n√

logn
is

analyzed using (9).

Pe ≤ P (F1) + (1 + o(1))

n√
log n∑
k=2

P (Fk) ≤ (1 + o(1))

·

n√
log n∑
k=2

exp(k(−µ log n+
2k

n
log n(

√
a−
√
b)2 − 2 log 2k + 2))



where µ is defined as

µ = (
√
a−
√
b)2 − 2 + γD1/2(p0||p1) > 0 (19)

For P (F1), we have P (F1) ≤ (n/2)2P (A1) ≤ 1
4n
−µ+o(1).

For 2 ≤ k ≤ n√
logn

, using the inequality

2k

n
(
√
a−
√
b)2 log n− 2 log 2k + 2 ≤ C

√
log n

we can obtain

Pe ≤
1

4
n−µ+o(1) + (1 + o(1))

n√
log n∑
k=2

exp(k((−µ+ o(1)) log n))

=
1

4
n−µ+o(1) + (1 + o(1))

n−µ+o(1)

1− n−µ+o(1)

= (
1

4
+ o(1))n−µ+o(1)

Therefore, (12) is established.
To prove the lower bound (14), we first define the event Aij

as p(x, z|y) > p(x, z|y∗) where y is defined as ys = −y∗s , s =
i, j and ys = y∗s otherwise.

Define S := {(i, j)|1 ≤ i < j ≤ n, y∗i = −y∗j }. Then
it follows that ∪(i,j)∈SAij ⊂ F , where F denotes the event
when ML fails to recover the community labels exactly. By
Bonferroni inequality,

P (
⋃

(i,j)∈S

Aij) ≥
∑

(i,j)∈S

P (Aij)−
∑

(i,j)6=(r,s)

P (Aij ∩Ars)

(20)
To get the lower bound of P (∪(i,j)∈SAij) by (20), we need
a lower bound for

∑
(i,j)∈S P (Aij) and an upper bound for∑

(i,j)6=(r,s) P (Aij ∩Ars). We first deal with P (Aij). Notice
that the single event Aij is equivalent with A1. By Lemma 1,
P (Aij) is lower bounded by n−γD1/2(p0||p1)−(

√
a−
√
b)2+o(1).

Since |S| = (n/2)2, the term
∑

(i,j)∈S P (Aij) is of order
1
4n
−µ+o(1). Next we give the upper bound of P (Aij ∩ Ars)

according to two cases.
First is the case when |{i, j, r, s}| = 4. Then Aij ∩Ars im-

plies the event Aijrs : p(x, z|y(1))p(x, z|y(2)) > p2(x, z|y∗)
where y(1) differs from y∗ at position (i, j) and y(2) differs
from y∗ at position (r, s). After taking the logarithm on
both sides and simplification, the inequality representation for
the event Aijrs is the same with A2. Therefore, P (Aij ∩
Ars) ≤ n−2(θ

∗
2+o(1)). The number of elements in the set

S1 := {(i, j, r, s)|i < j, r < s, |{i, j, r, s}| = 4} is
(
n
4

)
≤ n4.

Therefore, the probability sum
∑

(i,j,r,s)∈S1
P (Aij ∩ Ars) ≤

n−2µ+o(1), which has smaller order than n−µ+o(1) since
µ > 0.

Another case happens when |{i, j, r, s}| = 3. Under such
case, without loss of generality we can assume i = r, y

(1)
i =

y
(2)
r = 1. For the case y(1)i = y

(2)
r = −1, we only need to

exchange p0 and p1, and the following analysis is still valid.
Then

Aijrs : 2

m∑
i=1

log
p1(x1i)

p0(x2i)
+

2m∑
i=1

log
p0(x2i)

p1(x2i)
(21)

+ log
a

b

 n∑
i=1

(z′i − zi) + 2

3n/2∑
i=n+1

(z′i − zi)

 ≥ 0

Using Chernoff’s inequality, we can write an upper bound of
P (Aijrs) as

P (Aijrs) ≤

(∑
x∈X

p1−2s0 p2s1

)m(∑
x∈X

p1−s1 ps0

)2m

· exp
(
log n(−3

2
(a+ b) + a exp(−s log a

b
) + b exp(s log

a

b
)

+
a

2
exp(−2s log a

b
) +

b

2
exp(2s log

a

b
) + o(1))

)
Let s = 1

3 . We then have

P (Aijrs) ≤ (
∑
x∈X

p
1/3
0 (x)p

2/3
1 (x))3m

· exp(3
2
log n(−a− b+ a1/3b2/3 + a2/3b1/3 + o(1)))

≤ exp(− log n(γD1/2(p1||p0)

+
3

2
(a+ b− a1/3b2/3 − a2/3b1/3) + o(1)))

where the last inequality follows from Lemma 2. It then
follows that

P (Aijrs) ≤ n−µ
′/2−1−(γD1/2(p0||p1)+(

√
a−
√
b)2)+o(1)

where µ′ = (
√
a −
√
b)2 − 2 − 3a1/3b1/3(a1/6 − b1/6)2 >

0 from (13). The set S2 := {(i, j, r, s)|i < j, r <
s, |{i, j, r, s}| = 3} has at most n3 such terms, then we
have

∑
(i,j,r,s)∈S2

P (Aij ∩Ars) ≤ n−µ
′/2−µ+o(1), which has

smaller order than n−µ+o(1).
Based on the above discussion,

∑
(i,j,r,s)∈S2

P (Aij ∩
Ars) ≤ n−2µ+o(1) + n−µ−µ

′/2 = o(1)n−µ+o(1). Then we
conclude that

Pe = P (F ) ≥ P (∪(i,j)∈SAij)

≥ 1

4
n−µ+o(1) − o(1)n−µ+o(1), from (20)

= (
1

4
+ o(1))n−µ+o(1)

VI. CONCLUSION

In this paper, we obtain the optimal error rate in the
sense of exact recovery for a two-community SBM with side
information. Our result shows that the detection error can be
characterized by Rényi divergence and the parameters of SBM.
To control the recovery error within a given level, our result
shares insight on the necessary number of features and nodes.
Whether the condition (13) for the error rate can be relaxed
will be considered in the future study.
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