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Abstract—Levenshtein introduced the problem of constructing
k-deletion correcting codes in 1966, proved that the optimal
redundancy of those codes is O(k logN), and proposed an
optimal redundancy single-deletion correcting code (using the so-
called VT construction). However, the problem of constructing
optimal redundancy k-deletion correcting codes remained open.
Our key contribution is a solution to this longstanding open
problem. We present a k-deletion correcting code that has
redundancy 8k logn+o(logn) and encoding/decoding algorithms
of complexity O(n2k+1) for constant k.

I. INTRODUCTION

A set of binary vectors of length N is a k-deletion code
(denoted by C) iff any two vectors in C do not share a
subsequence of length N − k. The problem of constructing
a k-deletion code was introduced by Levenshtein [1]. He
proved that the optimal redundancy (defined as N − log |C|)
is O(k logN). Specifically, it is in the range k logN +
o(logN) to 2k logN+o(logN). In addition, he proposed the
following optimal construction (the well-known Varshamov-
Tenengolts (VT) code [2]):{

(c1, . . . , cN ) :

N∑
i=1

ici ≡ 0 mod (N + 1)

}
, (1)

that is capable of correcting a single deletion with redun-
dancy not more than log(N + 1) [1]. The encoding/decoding
complexity of VT codes is linear in N . Generalizing the
VT construction to correct more than a single deletion was
elusive for more than 50 years. In particular, the past ap-
proaches [3] [4], [5] result in asymptotic code rates that are
bounded away from 1.

A recent breakthrough paper [6] proposed a k-deletion
code construction with O(k2 log k logN) redundancy
and Ok(N log4N)1 encoding/decoding complexity.
For the case k = 2 deletions, the redundancy was
improved in [7], [8]. Specifically, the code in [8] has
redundancy of 7 logN and linear encoding/decoding
complexity. The work in [9] considered correction with high
probability and proposed a k-deletion code construction
with redundancy (k + 1)(2k + 1) logN + o(logN)
and decoding complexity O(Nk+1/ logk−1N). This
randomized coding setting was improved in [10], where
redundancy O(k log(n/k)) and complexity poly(n, k) is
achieved. However, finding a k-deletion code construction
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1The notion Ok denotes parameterized complexity, i.e., Ok(N log4 N) =
f(k)O(N log4 N) for some function f .

that achieves the optimal order redundancy O(k logN)
remained elusive.

Our key contribution is a solution to this longstand-
ing open problem: We present a code construction that
achieves O(k logN) redundancy and O(N2k+1) encoding/
decoding computational complexity (note that the complexity
is polynomial in N ). The following theorem summarizes our
main result. We note that throughout this paper, the optimality
of a code is redundancy-wise rather than cardinality-wise. The
problem of finding optimal cardinality k deletion code appears
highly nontrivial even for k = 1.

Theorem 1. For any integer n > k and N = n+ 8k log n+
o(log n), there exists an encoding function E : {0, 1}n →
{0, 1}N , computed in O(n2k+1) time, and a decoding func-
tion D : {0, 1}N−k → {0, 1}n, computed in O(nk+1) time,
such that for any c ∈ {0, 1}n and subsequence d ∈ {0, 1}N−k
of E(c), we have that D(d) = c.

Recently, an independent work [11] proposed a k dele-
tion code with O(k log n) redundancy and better complex-
ity of poly(n, k). Compare to the constant 8k log n in our
paper, the constant in [11] is not explicitly given and is at
least 400k log n. Moreover, the approaches in [11] and our
paper are different. Next we identify and describe our key
ideas. The key building blocks in our code construction are: (i)
generalizing the VT construction to k deletions by considering
constrained sequences, (ii) separating the encoded vector to
blocks and using concatenated codes and (iii) a novel strategy
to separate the vector to blocks by a single pattern.

In our previous work for 2-deletions codes [8], we general-
ized the VT construction. In particular, we proved that while
the higher order parity checks

∑n
i=1 i

jci mod (nj + 1), j =
0, 1, . . . , t might not work in general, those parity checks work
in the two deletions case when the sequences are constrained
to have no adjacent 1’s. In this paper we generalize this idea,
specifically, the higher order parity checks work for k = t
deletions when the sequences we need to protect satisfy the
following constrain: The distance between any two adjacent
1’s is at least k.

The fact that we can correct k deletions using the gen-
eralization of the VT construction on constrained sequences,
enables a concatenated code construction, which separates
the sequence c into small blocks. Each block is protected
by an inner code, usually a k-deletion code. All the blocks
together are protected by an outer code, for example, a Reed-
Solomon code. Separating and identifying the boundaries be-
tween blocks is one of the main challenges in the concatenated
code construction. The work in [12], [13] resolved this issue
by inserting markers between blocks. In [6], an approach that



uses occurrences of short subsequences, called patterns, as
markers was proposed. The success of decoding in existing
approaches requires that the patterns can not be destroyed or
generated by k deletions / insertions.

Here, we improve the redundancy in [6] by using a single
pattern to separate the blocks and allowing it to be destroyed
or generated by deletions / insertions. The pattern, which we
call synchronization pattern, is a length 3k + dlog ke + 4
sequence a = (a1, . . . , a3k+dlog ke+4) satisfying
• a3k+i = 1 for i ∈ {0, . . . , dlog ke+ 4}.
• There does not exist a j ∈ {1, . . . , 3k − 1}, such that
aj+i = 1 for i ∈ {0, . . . , dlog ke+ 4}.

Namely, a synchronization pattern is a sequence that ends
with dlog ke + 5 consecutive 1’s and no other 1 run with
length dlog ke + 5 exists. For a sequence c = (c1, . . . , cn),
define a synchronization vector 1sync(c) ∈ {0, 1}n by

1sync(c)i =


1, if (ci−3k+1, ci−3k+2, . . . , ci+dlog ke+4)

is a synchronization pattern,
0, else.

Note that 1sync(c)i = 0 for i ∈ [1, 3k − 1] and for i ∈ [n −
dlog ke−3, n]. It can be seen from the definition that any two
consecutive 1 entries in 1sync(c) have distance at least 3k.

Now we are ready to describe our construction that is a
generalization of the VT code. Define the integer vectors

m(`) , (1`, 1` + 2`, . . . ,

n∑
j=1

j`)

for ` ∈ {0, . . . , 6k}, where the i-th entry of m(`) is the sum
of the `-th powers of the first i entries. Given a sequence c ∈
{0, 1}n we compute a (VT like) redundancy of dimension 6k+
1 as follows:

f(c)` , c ·m(`) mod 3kn`+1, (2)

for ` ∈ {0, . . . , 6k}. It will be shown that the vec-
tor f(1sync(c)) helps recover the synchronization vec-
tor 1sync(c) from k deletions in c.

II. OUTLINE AND PRELIMINARIES

In this section we give an overview of the ingredients
(Lemmas 1, 2, and 3) that constitute our code construction,
as well as existing results (Lemmas 4, 5) that are needed
in our proof. We first present a lemma showing how to
recover synchronization vector from k deletions. The result,
which will be proved in Section III, is crucial in our con-
catenated code construction. For a sequence c ∈ {0, 1}n,
define its deletion ball Bk(c) to be the collection of sequences
that share a length n − k subsequence with c. For a number
vector v = (v0, . . . , v6k) that satisfies 0 ≤ v` < 3kn`+1, let

M(v) =

6k∑
`=0

v`

`−1∏
i=0

3kni+1 (3)

be a one-to-one mapping that maps the vector v into a
number that ranges in [0, (3k)6k+1n(3k+1)(6k+1) − 1], where

the set [a, b] = {a, a + 1, . . . , b}, called an interval, consists
of consecutive integers between a and b for a ≤ b.

Lemma 1. For integers n and k, there exists a func-
tion p : {0, 1}n → {0, 1}2k logn+o(logn), such that
if M(f(1sync(c))) ≡ M(f(1sync(c

′))) mod p(c) for two
sequence c ∈ {0, 1}n and c′ ∈ Bk(c), then c = c′.

With the knowledge of its synchronization vector 1sync(c),
we show in the next lemma how to recover the sequence c
with redundancy O(k log n), when the 0 runs in 1sync(c) is
not long. We introduce a notion, called k dense, to characterize
the limited 0 run length property.

A sequence c ∈ {0, 1}n is said to be k dense if the distance
between any two consecutive 1 entries in 1sync(c) is at most

L ,(dlog ke+ 5)2dlog ke+8dlog ne
+ (3k + dlog ke+ 4)(dlog ne+ 9 + dlog ke)

More precisely, the 0 runs in 1sync(c) have length at most
L− 1. The following lemma will be proved in Section IV.

Lemma 2. For integers k and n > k, there exists a func-
tion Hashk : {0, 1}n → {0, 1}4k logn+o(logn), such that
every k dense sequence c ∈ {0, 1}n can be recovered from
its length n− k subsequence d and Hashk(c).

Lemma 1 and Lemma 2 show how to protect k dense
sequences. As the final building block, the following lemma
presents a mapping that transforms any sequence to a k dense
sequence. Its proof will be given in Section V. Based on
Lemmas 1, 2, and 3, our k deletion code is given in Section VI.

Lemma 3. For integers k and n > k, there exists a map
T : {0, 1}n → {0, 1}n+2dlog ke+10, such that T (c) is a k
dense sequence for c ∈ {0, 1}n. Moreover, the sequence c
can be recovered from T (c).

Lemma 4 gives a k deletion correcting hash function that
is computable in Ok(poly(n)) time. It is a slight variation of
the result in [6]. Lemma 5 (See [14]) gives an upper bound
on the number of divisors of a positive integer n. It will be
used in proving Lemma 1.

Lemma 4. Let k be a fixed integer. For integers M
and n. There exists a hash function H : {0, 1}M →
{0, 1}d(M/dlogne)e(2k log logn+O(1)), computable
in Ok((M/ log n)n log2k n) time, such that any
sequence c ∈ {0, 1}M can be recovered from its length M−k
subsequence d and the hash H(c).

Lemma 5. For a positive integer n ≥ 3, the number of divisors
of n is upper bounded by 21.6 lnn/(ln lnn).

III. PROTECTING THE SYNCHRONIZATION VECTORS

For a sequence c ∈ {0, 1}n, let g(c) be a dimension 6k+1
vector with entries defined by

g(c)` , c ·m(`),

for ` ∈ {0, . . . , 6k}. The proof of Lemma 1 is based on the
following two lemmas together with Lemma 5.



Lemma 6. For c, c′ ∈ {0, 1}n, if c′ ∈ Bk(c), then 1sync(c) ∈
B3k(1sync(c

′)).

Let Rm be the set of length n sequences the 0 runs in which
have length at least m−1, meaning that any two consecutive 1
entries in a sequence c ∈ Rm have distance at least m.

Lemma 7. For c, c′ ∈ R3k, if c′ ∈ B3k(c), and g(c) = g(c′)
then c = c′.

Proof. We first compute the difference g(c)` − g(c′)`. Since
c′ ∈ B3k(c), there exist two subsets δ = {δ1, . . . , δ3k} ⊂
{1, . . . , n} and δ′ = {δ′1, . . . , δ′3k} ⊂ {1, . . . , n} such that
deleting bits with positions δ and δ′ respectively from c
and c′ result in the same length n− 3k subsequence. Further
define ∆ = {i : ci = 1} and ∆′ = {i : c′i = 1} to be the
positions of 1 entries in c and c′ respectively. Let S1 = ∆∩δ
and S2 = ∆ ∩ ([1, n]\δ) be the sets of 1 entry positions
that are deleted and not deleted in c respectively. Similarly
let S′1 = ∆′ ∩ δ′ and S′2 = ∆′ ∩ ([1, n]\δ′). Let the elements
in δ∪δ′ be ordered by p1 ≤ p2 ≤ . . . ≤ p6k. Denoting p0 = 0
and p6k+1 = n, we have that

g(c)` − g(c′)` =
∑
i∈∆

m
(`)
i −

∑
i∈∆′

m
(`)
i

=

6k∑
j=0

pj+1∑
i=pj+1

(|S1 ∩ [pj+1, n]| − |S′1 ∩ [pj+1, n]|

+ |S2 ∩ [i, n]| − |S′2 ∩ [i, n]|)i`. (4)

It can be shown that (a): −1 ≤ |S2 ∩ [i, n]| − |S′2 ∩ [i, n]| ≤
1 for i ∈ [1, n]. and (b): For each interval (pj , pj+1], j =
0, . . . , 6k, we have either |S2 ∩ [i, n]| − |S′2 ∩ [i, n]| ≤ 0 for
all i ∈ (pj , pj+1] or |S2 ∩ [i, n]| − |S′2 ∩ [i, n]| ≥ 0 for all i ∈
(pj , pj+1]. Denote

si ,|S1 ∩ [i, n]| − |S′1 ∩ [i, n]|
+ |S2 ∩ [i, n]| − |S′2 ∩ [i, n]|

From (a) and (b) it follows that for each inter-
val (pj , pj+1], j ∈ {0, . . . , 6k}, either si ≥ 0 for all i ∈
(pj , pj+1] or si ≤ 0 for all i ∈ (pj , pj+1]. Let x =
(x0, . . . , x6k) ∈ {−1, 1}6k+1 be a vector defined by

xi =

{
−1, if sj < 0 for some j ∈ (pi, pi+1]

1, else.
.

Then from Eq. (4) we have that

g(c)` − g(c)` =
6k∑
j=0

(

pj+1∑
i=pj+1

|si|i`)xj (5)

Let A be a 6k + 1 × 6k + 1 matrix with its entries defined
by Ae,j =

∑pj

i=pj−1+1 |si|ie−1 for e, j ∈ {1, . . . , 6k + 1}.
If g(c) = g(c′), we have the following linear equation

Ax =


∑p1

i=p0+1 |si|i0 . . .
∑p6k+1

i=p6k+1 |si|i0
...

. . .
...∑p1

i=p0+1 |si|i6k . . .
∑p6k+1

i=p6k+1 |si|i6k


 x0...
x6k

 = 0

(6)

We show that this is impossible unless A is a zero matrix.
Suppose on the contrary that A is nonzero, let j1 < . . . <
jQ be the indices of all nonzero columns of A. Let B be a
submatrix of A obtained by choosing the first Q rows and
columns with indices j1, . . . , jQ. Then we have that

Bx′ = B
[
x0, . . . , xQ−1

]T
= 0

Denote the interval Ii = (pji−1 , pji ]. By the multi-linearity
of the determinant and by the determinant formula of the
Vandermonde matrix,

det(B) =
∑

i1∈I1,...,iQ∈IQ

Q∏
q=1

|siq |
∏

1≤m1<m2≤Q

(im2
− im1

)

is positive since im2
> im1

for m2 > m1 and there exist
i1 ∈ I1, . . . , iQ ∈ IQ such that |si1 |, . . . , |siQ | > 0. Therefore,
the linear equation Bx′ = 0 does not have nonzero solutions,
contradicting to the fact that x′ ∈ {−1, 1}Q. Hence A is a
zero matrix, meaning that

|S1 ∩ [i, n]| − |S′1 ∩ [i, n]|+ |S2 ∩ [i, n]| − |S′2 ∩ [i, n]|
=|∆ ∩ [i, n]| − |∆′ ∩ [i, n]| = 0

for i ∈ {1, . . . , n}. This implies ∆ = ∆′ and thus c = c′.

Let ∆ = {i : 1sync(c)i = 1} and ∆′ = {i :
1sync(c

′)i = 1}. From Lemma 6 we have that 1sync(c
′) ∈

B3k(1sync(c)). Hence (1sync(c
′)i, . . . ,1sync(c

′)n) ∈
B3k((1sync(c)i, . . . ,1sync(c)n)). This implies that
||∆ ∩ [i, n]| − |∆′ ∩ [i, n]|| ≤ 3k. Therefore,

|g(1sync(c))` − g(1sync(c
′))`|

=|
n∑
i

(|∆ ∩ [i, n]| − |∆′ ∩ [i, n]|)i`| ≤
n∑
i

3ki` < 3kn`+1.

(7)

Hence if f(1sync(c)) = f(1sync(c
′)) (see (2) for defini-

tion of f ), we have that g(1sync(c))` ≡ g(1sync(c
′))` mod

3kn`+1, which implies that g(1sync(c)) = g(1sync(c
′))

according to E.q. (7). Since 1sync(c
′) ∈ B3k(1sync(c))

and 1sync(c),1sync(c
′) ∈ R3k, from Lemma 7 we have

that 1sync(c) = 1sync(c
′).

We are now ready to prove Lemma 1. Since
f(1sync(c)) 6= f(1sync(c

′)) for c′ ∈ Bk(c)\{c}, we
have that |M(f(1sync(c))) − M(f(1sync(c

′)))| 6= 0
(see (3) for definition of M ) for c′ ∈ Bk(c)\{c}.
According to Lemma 5, the number of divisors
of |M(f(1sync(c)))−M(f(1sync(c

′)))| is upper bounded by
22[(3k+1)(6k+1) lnn+(6k+1) ln 3k]/ ln((3k+1)(6k+1) lnn+(6k+1) ln 3k)

= 2o(logn). Since |Bk(c)| ≤
(
n
k

)2
2k ≤ 2n2k, there are at

most 2n2k2o(logn) numbers that divide |M(f(1sync(c))) −
M(f(1sync(c

′)))| for some c′ ∈ Bk(c)\{c}. Therefore,
there exists a number p(c) ∈ [1, 22k logn+o(logn)]
such that p(c) 6 | |M(f(1sync(c

′))) − M(f(1sync(c)))|
for c′ ∈ Bk(c)\{c}. Hence, if M(f(1sync(c

′))) ≡
M(f(1sync(c))) mod p(c) and c′ ∈ Bk(c), we have
that M(f(1sync(c

′))) −M(f(1sync(c))) ≡ 0 mod p(c) and
thus c′ = c.



IV. HASH FOR k dense SEQUENCES

In this section, we present a hash function for correcting k
deletions in a k dense sequence c, based on the knowledge of
the synchronization vector 1sync(c).

Let the positions of the 1 entries in 1sync(c) be ordered
by t1 < t2 < . . . < tJ , where J =

∑n
i=1 1sync(c)i.

Furthermore, let t0 = 0 and tJ+1 = n + 1 Split c into
blocks a0, . . . ,aJ , where

aj = (ctj+1, ctj+2, . . . , ctj+1−1).

Let the hash function Hashk : be given by

Hashk(c) = RS2k((H(a0), . . . ,H(aJ))),

where RS2k(c) is the redundancy of a systematic
Reed-Solomon code that corrects 2k substitution errors.
The sequence (H(a0), . . . ,H(aJ)) is a sequence of
symbols H(aj) (see Lemma 4), each having alphabet
size 2d(L/dlogne)e(2k log logn+O(1)). The length of Hashk(c)
is max{4k log n, 4kd(L/dlog ne)e(2k log log n + O(1))} =
4k log n+ o(log n). We now present the following procedure
that recovers c from its length n − k subsequence d and the
hash function Hashk(c), given 1sync(c).

1) Step 1: Find the synchronization vector 1sync(d) ∈
{0, 1}n−k of d. Find the locations of 1 entries
in 1sync(c) and order them by t1 < . . . < tJ . Let t0 = 0
and tJ+1 = n+ 1

2) Step 2: Let 1sync(d)0 = 1sync(d)n+1 = 1. For
each j ∈ [0, J ], if there exist two numbers ij ∈ [tj −
k, tj ] and ij+1 ∈ [tj+1−k, tj+1] such that 1sync(d)ij =
1sync(d)ij = 1, set a′j = (dij+1, dij+2, . . . , dij+1−1).
Else set a′j = 0.

3) Step 3: Apply the Reed-Solomon decoder to
decode (H(a′0), . . . ,H(a′J), Hashk(c)) and to
recover H(aj) for j ∈ [0, J ].

4) Step 4: Let bj = (dtj+1, . . . , dtj+1−k−1), recover aj by
using bj and H(aj).

To prove the correctness of the decoding, we first show that aj

can be recovered from bj and H(aj). This can be done
by noticing that (dtj+1, . . . , dtj+1−k−1) is a length |aj | − k
subsequence of aj , where |aj | is the length of aj . Furthermore,
it can be proved that there exist at most 2k indices j, such
that a′j 6= aj . Thus the Reed-Solomon code works.

V. TRANSFORMATION TO k dense SEQUENCES

In this section we present an algorithm to compute T (c),
which transforms any sequence c ∈ {0, 1}n into a k dense
sequence. Let 1x and 0y denote consecutive x 1’s and con-
secutive y 0’s respectively. It can be shown that any sequence c
satisfying the following is a k dense sequence.

Property 1: There is no i ∈ [1, n] that satis-
fies (cj , cj+1, . . . , cj+dlog ke+4) 6= 1dlog ke+5 for j ∈ [i, i +

L1−dlog ke− 5], where L1 , (dlog ke+5)2dlog ke+8dlog ne.
property 2: Any interval [i, i + L2 − 1] ⊆ [1, n] of

length L2 , (3k + dlog ke + 4)(dlog ne + 9 + dlog ke)
contains a sub-interval [j, j + 3k + dlog ke + 3], such

that (cm, cm+1, . . . , cm+dlog ke+4) 6= 1dlog ke+5 for m ∈ [j, j+
3k − 1].

Next we show how to transform a sequence into one that
satisfies Properties 1 and 2. The following two lemmas will
be used, where Lemma 8 presents a function that outputs a
sequence satisfying Property 1.

Lemma 8. For integers k and n > k, there exists
a map T1 : {0, 1}n → {0, 1}n+dlog ke+5, computable
in O(n2k log n log k) time, such that T1(c) satisfies Prop-
erty 1. The sequence c can be recovered from T1(c).

Proof. (Sketch) We first show that a sequence b ∈ {0, 1}L1

containing no consecutive dlog ke + 5 1’s can be uniquely
represented by a sequence φ(b) of length less than L1 −
dlog ne − dlog ke − 6. Split d into 2dlog ke+8dlog ne blocks
of length (dlog ke+ 5). Since each block is not 1dlog ke+5, it
can be represented by a symbol of alphabet size 2dlog ke+5−1.
Therefore, the sequence b can be uniquely represented by a
sequence v of 2dlog ke+8dlog ne symbols, each having alphabet
size 2dlog ke+5−1. Converting v into a binary sequence φ(b),
we have that the binary sequence has length

D , log2(2
dlog ke+5 − 1)2

dlog ke+8dlogne

≤L1 − dlog ne − dlog ke − 6

For a sequence c, the encoding procedure for comput-
ing T1(c) is as follows.

1) Initialization: Let T1(c) = c. Append 1dlog ke+5 to the
end of the sequence T1(c). Let i = 1 and n′ = n. Go
to Step 1.

2) Step 1: If i ≤ n′ and (cj , cj+1, . . . ,
cj+dlog ke+4) 6= 1dlog ke+5 for j ∈ [i, i+L1−dlog ke−5],
Delete (T1(c)i, . . . , T1(c)i+L1−1) from T1(c) and
append (i, φ((T1(c)i, . . . , T1(c)i+L1−1)),1

dlog ke+5,
0L1−dlogne−dlog ke−5−D) to the end of T1(c).
Let n′ = n′ − L1 and i = 1. Repeat. Else go to
Step 2.

3) Step 2: If i ≤ n′, let i = i + 1 and go to Step 1. Else
output T1(c).

The length of T1(c) remains to be n+ dlog ke+ 5.
We now give the following decoding procedure that recov-

ers c from T1(c).
1) Initialization: Let c = T1(c) and go to Step 1.
2) Step 1: If cn+dlog ke+5 = 0, let i be the

decimal representation of (cn+dlog ke+6−L1
, . . . ,

cn+dlog ke+5−L1+dlogne). Let b be the sequence ob-
tained by computing φ−1((cn+dlog ke+6−L1+dlogne, . . . ,
cn+dlog ke+5−L1+D)), i.e., converting
(cn+dlog ke+6−L1+dlogne, . . . , cn+dlog ke+5−L1+D)
into a sequence of L1/(dlog ke + 5) symbols, each
lies in [0, 2dlog ke+5 − 2], and converting each symbol
to binary a sequence of length dlog ke + 5. Note
that the converted binary sequence is not 1dlog ke+5.
Delete (cn+dlog ke+6−L1

, . . . , cn+dlog ke+5) from c and
insert b at location i of c. Repeat. Else output c.



Lemma 9. For an integer k, let c ∈ {0, 1}3k+dlog ke+4 be a se-
quence such that ci = ci+1 = . . . = ci+dlog ke+4 = 1 for some
i ∈ [1, 3k]. There exists a mapping T2 : {0, 1}3k+dlog ke+4 →
{0, 1}3k+dlog ke+3, computable in O(k2 log k) time, such
that T2(c) contains no dlog ke + 5 consecutive 1 bits. In
addition, the sequence c can be recovered from T2(c).

We are now ready to give the encoding and decoding
procedure for computing T (c). The encoding procedure for
computing T (c) is as follows

1) Initialization: Let T (c) = T1(c). Append 1dlog ke+5 to
the end of the sequence T (c). Let n′ = n+ dlog ke+5
and i = 1. Go to Step 1.

2) Step 1: If i ≤ n′ − dlog ke − 5 and for
every j ∈ [i, i + L2 − 3k − dlog ke − 4],
there exists m ∈ [j, j + 3k − 1] such
that (cm, cm+1, . . . , cm+dlog ke+4) = 1dlog ke+5.
Split (ci, ci+1, . . . , ci+L2−1) into (dlog ne+9+dlog ke)
blocks b1,b2, . . . ,bdlogne+9+dlog ke of length
3k + dlog ke + 4. Delete (b2, . . . ,bdlogne+8+dlog ke)
from T (c) and append (0, T2(b2), T2(b3), . . . ,
T2(bdlogne+8+dlog ke), i+3k+dlog ke+4,1dlog ke+5, 0)
to the end of T (c). Let n′ = n′−L2+6k+2dlog ke+8
and i = 1. Repeat. Else go to Step 2.

3) Step 2: If i ≤ n′, let i = i + 1 and go to Step 1. Else
output T (c).

The length of T (c) remains to be n+ 2dlog ke+ 10.
Finally, we show that T (c) is decodable, with the following

decoding procedure that recovers c from T (c).
1) Initialization: Let c = T (c) and go to Step 1.
2) Step 1: If cn+2dlog ke+10 = 0, let i be the decimal rep-

resentation of (cn+dlog ke+5−dlogne, . . . , cn+dlog ke+4).
Break (cn+4dlog ke+19−L2+6k, . . . , cn+dlog ke+4−dlogne)
into (L2 − 6k − 2dlog ke − 8)/(3k + dlog ke + 4)
blocks b′1, . . . ,b

′
(L2−6k−2dlog ke−8)/(3k+dlog ke+4) of

length 3k + dlog ke + 3. Compute bj = T−12 (b′j)
for j ∈ [1, (L2 − 6k − 2dlog ke − 8)/(3k +
dlog ke + 4)], where T−12 (b′j) is obtained
by applying T2 decoder (Lemma 9) on b′j .
Delete (cn+2dlog ke+11−L2+6k, . . . , cn+2dlog ke+10)
from c and insert b1, . . . ,b(L2−6k−2dlog ke−8)/(3k+dlog ke+4)

at location i of c. Repeat. Else output c.

VI. ENCODING

In this section we present the encoding function E and prove
Theorem 1. The function E is given by

E(c) = (T (c), R′(c), R′′(c)),

where

R′(c) =(M(f(1sync(T (c)))) mod p(T (c)), p(T (c)),

Hashk(T (c))), and
R′′(c) =Repk+1(H(R′(c))).

Here M is the function defined in Eq. (3)
and Repk+1(H(R′(c))) is the k + 1-fold repetition of

the bits in H(R′(c)). It can be seen that the codeword E(c)
has length N = n+8k log n+ o(log n). Thus the redundancy
is 8k log n+ o(log n).It can then be shown that

(a). The redundancy R′(c) can be recovered from k
deletions with the help of R′′(c).
(b). The sequence c can be recovered from k deletions
with the help of R′(c).

Let N1 and N2 be the length of R′(c) and R′′(c) repec-
tively. To decode c from a d, it suffices to note that (1). The
sequence (d1, . . . , dn+2dlog ke+10−k) is a length n+2dlog ke+
10 − k subsequence T (c) ∈ {0, 1}2dlog ke+10. (2). The
sequence (dn+2dlog ke+11, dn+2dlog ke+10+N1−k) is
a length N1 − k subsequence of R′(c). (3). The
sequence (dn+2dlog ke+11+N1

, . . . , dn+2dlog ke+10+N1+N2−k)
is a length N2 − k subsequence of R′′(c). Since R′′(c) is
a k+1-fold repetition of H(R′(c)), it can be recovered from
its length N2 − k subsequence.

The encoding complexity of E(c) is O(n2k+1) for us-
ing brute force to find p(T (c)). The decoding complexity
is O(nk+1) for using brute force to recover 1sync(T (c))
from M(f(1sync(T (c)))) mod p(T (c)) and p(T (c)).

VII. CONCLUSION AND FUTURE WORK

We construct a k-deletion correcting code with optimal
order redundancy. Interesting open problems include finding
complexity O(NO(1)) encoding/decoding algorithms for our
proposed code, as well as constructing a systematic k-deletion
code with optimal redundancy.
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