
IEEE TRANSACTIONS ON INFORMATION THEORY 1

Correcting Multiple Deletions and Insertions
in Racetrack Memory
Jin Sima and Jehoshua Bruck, Fellow, IEEE

Abstract—Racetrack memory is a tape-like structure where
data is stored sequentially as a track of single-bit memory cells.
The cells are accessed through read/write ports, called heads.
When reading/writing the data, the heads stay fixed and the track
is shifting. One of the main challenges in developing racetrack
memory systems is the limited precision in controlling the track
shifts, that in turn affects the reliability of reading and writing
the data. A current proposal for combating deletions in racetrack
memories is to use redundant heads per-track resulting in
multiple copies (potentially erroneous) and recovering the data by
solving a specialized version of a sequence reconstruction prob-
lem. Using this approach, k-deletion correcting codes of length n,
with d ≥ 2 heads per-track, with redundancy log logn+ 4 were
constructed. However, the known approach requires that k ≤ d,
namely, that the number of heads d is larger than or equal to the
number of correctable deletions k. Here we address the question:
What is the asymptotically optimal order of redundancy that can
be achieved for a k-deletion code (k is a constant) if the number
of heads is fixed at d (due to implementation constraints)? One of
our key results is an answer to this question, namely, we construct
codes that can correct k deletions, for any k beyond the known
limit of d. The codes have asymptotically 8k log logn+o(log log n)
redundancy for d ≤ k ≤ 2d − 1. In addition, when k ≥ 2d, our
codes have asymptotically 2bk/dc logn + o(logn) redundancy,
that we prove it is order-wise optimal, specifically, we prove
that the redundancy required for correcting k deletions is at
least bk/2dc logn+ o(logn). The encoding/decoding complexity
of our codes is O(n log2k+1 n). Finally, we ask a general question:
What is the order-wise optimal redundancy for codes correcting
a combination of at most k deletions and insertions in a d-head
racetrack memory? We prove that the redundancy used for a
combination of k deletion and insertion errors is asymptotically
the same as that needed in the case of k deletion errors.

Index Terms—Racetrack memory, Deletion codes.

I. INTRODUCTION

Racetrack memory is a promising non-volatile memory that
possesses the advantages of ultra-high storage density and low
latency (comparable to SRAM latency) [9], [13]. It has a tape-
like structure where the data is stored sequentially as a track

Manuscript received July 17, 2022; revised March 09, 2023; accepted
May 8, 2023. This research was partially supported by NSF grant CCF-
1816965 and NSF grant CCF-1717884. This paper was presented in part
at the 2019 IEEE International Syposium on Information Theory. [DOI:
10.1109/ISIT.2019.8849783] (Corresponding author: Jin Sima.)

J. Sima was with the Electrical Engineering Department, California Institute
of Technology, Pasadena, CA, 91125 USA. He is now with the Department
of Electrical and Computer Engineering, University of Illinois Urbana-
Champaign, Urbana 61801, IL, USA (e-mail: jsima@illinois.edu).

J. Bruck is with the Electrical Engineering Department, California Institute
of Technology, Pasadena, CA, 91125 USA (e-mail: bruck@caltech.edu)

Communicated by A. Wachter-Zeh, Associate Editor for Coding and
Decoding.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIT.2023.3279766.

Digital Object Identifier 10.1109/TIT.2023.3279766

of single-bit memory cells. The cells are accessed through
read/write ports, called heads. When reading/writing the data,
the heads stay fixed and the track shifts. Fig. 1 illustrates
multiple heads reading/writing on a single track.

One of the main challenges in developing racetrack memory
systems is the limited precision in controlling the track shifts,
that in turn affects the reliability of reading and writing the
data [6], [18]. Specifically, the track may either not shift or
shift more steps than expected. When the track does not shift,
the same cell is read twice, causing a sticky insertion. When
the track shifts more than a single step, cells are skipped,
causing deletions in the reads [3].

It is natural to use deletion and sticky insertion correcting
codes to deal with the shift errors. Also, it is known that a
code correcting deletions is capable of correcting an equal
number of combination of deletions and insertions [7]. How-
ever, designing redundancy and complexity efficient deletion
correcting codes has been an open problem for decades,
though there is a significant advance toward the solution
recently. In fact, for k, a constant number of deletions, and
n, the code length, no explicit k-deletion correcting codes
with redundancy less than O(

√
n)1 were known even for

k = 2 until [1] proposed a code with redundancy asymptoti-
cally 64k2 log k log n+o(log n). Evidently, the redundancy of
this code is orders of magnitude away from the optimal, known
to be in the range k log n+o(log n) to 2k log n+o(log n) [7].
After [1], the work of [5] and [10] independently proposed k-
deletion codes with O(k log n) bits of redundancy, which are
order-wise optimal. Following [10], [11] proposed a systematic
deletion code with 4k log n+o(log n) bits of redundancy and is
computationally efficient for constant k. The redundancy was
later improved in [12] to (4k−1) log n+o(log n). Despite the
recent progress in deletion and insertion correcting codes, it is
still tempting to explore constructions of deletion and insertion
correcting codes that are specialized for racetrack memories
and provide more efficient redundancy and lower complexity
encoding/decoding algorithms.

There are two approaches for constructing deletion/insertion
correcting codes for racetrack memories. The first is to assume
reading multiple parallel tracks simultaneously with a single
head per-track. Based on this assumption, the proposed codes
in [15] can correct up to two deletions per head and the
proposed codes in [2] can correct l bursts of deletions, each
of length at most b. The codes in [2] are asymptotically (in
the number of heads) rate-optimal. The second approach is to

1Throughout this paper, we say f(n) = O(g(n)) if there exist two
constants C1 and C2 and a positive integer n0 such that C1 ≤ f(n)

g(n)
≤ C2

for n ≥ n0. In addition, we say f(n) = o(g(n)) if limn→∞
f(n)
g(n)

= 0.

2 IEEE TRANSACTIONS ON INFORMATION THEORY

leverage the fact that one can add redundant heads to the same
track with small area cost [3], [4], [16], [18]. As shown in
Fig. 1, a track is read by multiple heads, resulting in multiple
copies (potentially erroneous) of the same sequence. The heads
stay fixed and normally adjacent heads have equal distance
[18]. Hence, the deletion indices (the indices where deletions
occur) in different reads have fixed relative distances. This
can be regarded as a sequence reconstruction problem, where
a sequence c needs to be recovered from multiple copies,
each obtained after k deletions in c. We emphasize that the
general sequence reconstruction problem [8] is different from
the multi-head racetrack memory settings, since in multi-head
racetrack memory, the set of deletion indices in one head is a
shift of that in another head [3]. Demonstrating the advantage
of multiple heads, the paper [4] proposed an efficient k-head
k-deletion code of length n with redundancy log log n + 4
where the distance between adjacent heads, denoted by t,
is at least 2 log n + 4, and a k-head (k − 1)-deletion code
with O(1) redundancy where the head distance t is at least
(k(k − 1)/2 + 1) log n + (k3 + 5k + 3)/3. The number of
heads, denoted by d2, used in the codes in [4] is required to
be at least k. For k-deletion correcting codes using d ≤ k− 1
heads, constructions were proposed in [3] that use a classical
single head k-deletion code as building blocks, which have
redundancy at least O((k − d) log n). The head distance t in
[3] is at least (k(k − 1)/2 + 1) log n+ (k3 + 5k + 3)/3. It is
known that the number of heads affects the area overhead
of the racetrack memory device [18], hence, it motivates
the following natural question: What is the asymptotically
optimal order of redundancy that can be achieved for a k-
deletion code (k is a constant) if the number of heads is fixed
at d (due to area limitations)?

One of our key results is an answer to this question, namely,
we construct length n codes that correct k deletions, for any
k beyond the known limit of d. Our code has 8k log log n +
o(log log n) redundancy for the case when d ≤ k ≤ 2d −
1. In addition, when k ≥ 2d, the code has 2bk/dc log n +
o(log n) redundancy. The head distance t in our codes is at
least O(poly(k) log n). Our key result is summarized formally
by the following theorem. Notice that the theorem implies
that the redundancy of our codes is asymptotically larger than
optimal by a factor of at most four when t = no(1) and k ≥ 2d.

Theorem 1. For constant positive integers k and d, let the
distance t between adjacent heads be

t ≥ max{(3k + dlog ne+ 2)[k(k − 1)/2 + 1]

+ (7k − k3)/6, (4k + 1)(5k + dlog ne+ 3)}. (1)

Then for d ≤ k ≤ 2d− 1, there exists an explicit length N =
n+ 8k log t+ o(log t) d-head k-deletion correcting code with
redundancy 8k log t+ o(log t). Specifically, the redundancy is
8k log log n+ o(log log n) for t = O(poly(k) log n) satisfying
(1). For k ≥ 2d, there exists an explicit length N = n +
2bk/dcmax{log n, 4k log t}+o(log n) d-head k-deletion cor-
recting code with redundancy 2bk/dcmax{log n, 4k log t} +
o(log n). Specifically, the redundancy becomes 2bk/dc log n+

2Throughout this paper, it is assumed that d ≥ 2.

o(log n) for t = no(1) satisfying (1). The encoding and
decoding functions can be computed in O(nt2k+1) time.
Moreover, for k ≥ 2d and t = no(1), the amount of redundancy
of a d-head k-deletion correcting code is lower bounded
by bk/2dc log n+ o(log n).

Since in addition to deletion errors, sticky insertion errors
and substitution errors occur in racetrack memory, we are
interested in codes that correct not only deletions, but a combi-
nation of deletion, sticky insertion, and substitution errors in a
multiple head racetrack memory. However, in contrast to single
head cases where a deletion code is also a deletion/insertion
code, there is no such equivalence in multiple head racetrack
memories. Correcting a combination of at most k deletions
and sticky insertions in total turns out to be more difficult
than correcting k deletion errors. It is not known whether
the k-deletion code with log log n+O(1) redundancy and the
(k− 1)-deletion code with O(1) redundancy in [3] apply to a
combination of deletion and sticky insertion errors in a k-head
racetrack memory.

Our second result, which is the main result in this paper,
provides an answer for such scenarios. We consider a more
general problem of correcting a combination of deletions and
insertions in a d-head racetrack memory, rather than deletions
and sticky insertions, and show that the redundancy result
for deletion cases extends to cases with a combination of
deletions and insertions. Note that this covers the cases with
deletion, insertion, and substitution errors, since a substitution
is a deletion followed by an insertion.

Theorem 2. For constant positive integers k and d, let the
distance t between adjacent heads be

t > (
k2

4
+ 3k)(6k + dlog ne+ 3) + 8k + dlog ne+ 3. (2)

Then for k < d, there exists an explicit length N = n +
k + 1 + O(1) code correcting a combination of at most
k insertions and deletions in a d-head racetrack memory
with redundancy k + 1 + O(1). The encoding and decoding
complexity is poly(n). For d ≤ k ≤ 2d − 1, there exists
a length N = n + 4k log t + o(log t) code correcting a
combination of at most k insertions and deletions in a d-
head racetrack memory with redundancy 8k log t + o(log t).
Specifically, the redundancy is 8k log log n + o(log log n) for
t = O(poly(k) log n) satisfying (2). Finally, when d ≥ 2d,
there exists a length N = n+ 2bk/dcmax{log n, 4k log t}+
o(log n) code that corrects a combination of at most k
insertions and deletions in a d-head racetrack memory with
redundancy 2bk/dcmax{log n, 4k log t} + o(log n). Specifi-
cally, the redundancy is 2bk/dc log n+ o(log n) for t = no(1)

satisfying (2). The encoding and decoding functions can be
computed in O(nt2k+1) time.

Remark 1. Theorem 2 improves the head distance lower
bound in Theorem 1 when k ≥ 15 and n is sufficiently large.

Remark 2. As mentioned above, the shift errors in racetrack
memory include deletions and sticky insertions. The dele-
tion/insertion codes in Theorem 2 are more general. However,
there is asymptotically no additional redundancy cost in our

SIMA AND BRUCK: CORRECTING MULTIPLE DELETIONS AND INSERTIONS IN RACETRACK MEMORY 3

c1. . .c6c7c8c9. . .

Fig. 1. Racetrack memory with multiple heads.

code constructions by considering the general deletions and
insertions, since the redundancy of our deletion correcting
only codes in Theorem 1 is asymptotically the same as that
of the codes correcting deletions and insertions in Theorem
2. Moreover, the capability of correcting a combination of
deletions and insertions makes it possible to correct a com-
bination of deletions, insertions, and substitutions, a problem
also studied in [3].

We note that the head distance t in our construction needs
to be O(poly(k) log n) or no(1) to get the desired redundancy
results, while in [3], [4] the head distance t is only required
to be larger than O(poly(k) log n) and can be nO(1). In race-
track memory systems [16], [18], the head distance between
adjacent redundant heads can be small, and choosing larger
head distance might increase the latency for decoding.

Some of the key ideas in our encoding/decoding include:
(1) An efficient algorithm (described in Lemma 5) to map
any binary sequence to a sequence such that its consecutive
subsequences of given length are period free, which is used
for encoding. (2) An algorithm (described in Section IV) to
align (synchronize) the reads and identify the error indices
under deletions, which is used for decoding. (3) An algorithm
(described in Section VI) to align the reads and correct errors
under deletions and insertions, used for decoding.

Organization: In Section II, we present the problem set-
tings and some basic lemmas needed in our proof. Section III
presents the proof of the main result for the case d ≤ k ≤
2d− 1. Section IV describes in detail how to synchronize the
reads. The case k ≥ 2d is addressed in Section V. Section VI
shows how to correct deletion and insertion errors and proves
Theorem 2. Section VII concludes the paper.

II. PRELIMINARIES

A. Problem Settings

We now describe the problem settings and the notations
needed. For any two integers i ≤ j, let [i, j] = {i, i+1, . . . , j−
1, j} be an integer interval that contains all integers between i
and j. Let [i, j] = ∅ for i > j. For a length n sequence c =
(c1, . . . , cn), an index set I ⊆ [1, n], let

cI = (ci : i ∈ I)

be a subsequence of c, obtained by choosing the bits with
indices in the set I. Denote by Ic = [1, n]\I the complement
of I.

In the channel model of a d-head racetrack memory, the
input is a binary sequence c ∈ {0, 1}n. The channel output
consists of d subsequences of c of length n−k, obtained by the
d heads after k deletions in the channel input c, respectively.

Each subsequence is called a read. Let δi = {δi,1, . . . , δi,k} ⊆
[1, n] be the deletion indices in the ith head such that δi,1 <
. . . < δi,k. Then, the read from the ith head is given by cδci , i ∈
[1, d], i.e., bits c`, ` ∈ δi are deleted.

Note that in a d-head racetrack memory, the heads are
placed in fixed locations, and the deletions are caused by
”over-shifts” of the track. Hence when a deletion occurs at the
jth bit in the read of the ith head, a deletion also occurs at the
(j+t)th bit in the read of the (i+1)th head, i ∈ [d−1], where
t is the distance between adjacent heads. Then, the deletion
index sets {δi}di=1 satisfy

δi+1 = δi + t,

for a positive integer t, where for an integer set S and an
integer t, S + t = {x+ t : x ∈ S}.

To formally define a code for the d-head racetrack memory,
we represent the d reads from the d heads by a d × (n − k)
binary matrix, called the read matrix. The ith row of the read
matrix is the read from the ith head. Let D(c, δ1, . . . , δd) ∈
{0, 1}d×(n−k) be the read matrix of a d-head racetrack mem-
ory, where the input is c ∈ {0, 1}n and the deletion indices
in the ith head are given by δi, i ∈ [1, d]. By this definition,
the ith row of D(c, δ1, . . . , δd) is cδci .

Example 1. Consider a 3 head racetrack memory with adja-
cent head distance t = 2. Let the deletion index set δ1 =
{2, 5, 6}. Then, we have that δ2 = {4, 7, 8} and δ3 =
{6, 9, 10}. Let c = (1, 1, 0, 1, 0, 0, 0, 1, 0, 1) be a sequence of
length 10. Then, the read matrix is given by

D(c, δ1, δ2, δ3) =

1 0 1 0 1 0 1
1 1 0 0 0 0 1
1 1 0 1 0 0 1

 .
Remark 3. We note that based on the model in this paper, no
errors occur in the first δ1,1 +(i−1)t−1 bits of the ith head.
Similarly, no errors occur in the last n− δd,k + (d− i)t bits.
Though this assumption might simplify the cases in racetrack
memories, where errors might occur in the first δ1,1 + (i −
1)t− 1 bits and the last n− δd,k + (d− i)t bits, we focus on
this simplified assumption to study how multiple fixed heads
help in correcting deletion/insertions. In addition, the first and
the last bits in each head can be protected by adding extra
redundancy.

The deletion ball Dk(c, t) of a sequence c ∈ {0, 1}n is the
set of all possible read matrices in a d-head racetrack memory
with input c and head distance t, i.e.,

Dk(c, t) = {D(c, δ1, . . . , δd) :δi+1 = δi + t, δi ⊆ [1, n],

|δi| = k, i ∈ [1, d− 1]}.

A d-head k-deletion code C is the set of all sequences such
that the deletion balls of any two do not intersect, i.e., for
any c, c′ ∈ C, Dk(c, t) ∩ Dk(c′, t) = ∅.

The following notations will be used throughout the paper.
For a matrix A and two index sets I1 ⊆ [1, d] and I2 ⊆
[1, n− k], let AI1,I2 denote the submatrix of A obtained by
selecting the rows i ∈ I1 and the columns j ∈ I2. For any two
integer sets S1 and S2, the set S1\S2 = {x : x ∈ S1, x /∈ S2}
denotes the difference between sets S1 and S2.

4 IEEE TRANSACTIONS ON INFORMATION THEORY

A sequence c ∈ {0, 1}n is said to have period ` if ci = ci+`
for i ∈ [1, n − `]. We use L(c, `) to denote the length of the
longest subsequence of consecutive bits in c that has period `.
Furthermore, define

L(c,≤ k) , max
`≤k

L(c, `).

Example 2. Let the sequence c be c = (1, 1, 0, 1, 1, 0, 1, 0, 0).
Then we have that L(c, 1) = 2, since c =
(1,1, 0,1,1, 0, 1,0,0), that L(c, 2) = 4, since
c = (1, 1, 0, 1,1,0,1,0, 0), and that L(c, 3) = 7, since
c = (1,1,0,1,1,0,1, 0, 0). Thus, we have L(c,≤ 3) = 7.

B. Racetrack Memory with Insertion and Deletion errors

We now describe the notations and problem settings for d-
head racetrack memories with a combination of insertion and
deletion errors, which is similar to d-head racetrack memories
with deletion errors only. In addition to the deletion errors
described by deletion index sets {δi}di=1 satisfying

δi+1 = δi + t,

i ∈ [1, d − 1], and |δi| = r, i ∈ [1, d], we consider insertion
errors described by insertion index sets {γi}di=1 satisfying

γi+1 = γi + t,

i ∈ [1, d−1], where γi = {γi,1, . . . , γi,s} for i ∈ [1, d], and the
inserted bits bi = (bi,1, bi,2, . . . , bi,s), i ∈ [1, d]. It is assumed
that γi,j ∈ [0, n] for i ∈ [1, d] and j ∈ [1, s]. As a result of the
insertion errors, the bit bi,j is inserted after the γi,j th bit of c
in the ith head, for i ∈ [1, d] and j ∈ [1, s]. When γi,j = 0,
the insertion occurs before c1 in the ith head. We note that bi
can be different for different i’s.

We call a deletion error or an insertion error an edit
error, or error in Section VI. For edit errors, define
the read matrix E(c, δ1, . . . , δd,γ1, . . . ,γd,b1, . . . ,bd) ∈
{0, 1}d×(n+s−r), for i ∈ [1, d], as follows. The ith row of
E(c, δ1, . . . , δd,γ1, . . . , γd,b1, . . . ,bd) ∈ {0, 1}d×(n+s−r)

is obtained by deleting the bits c`:`∈δi and insert bi,j after
cγi,j , for i ∈ [1, d] and j ∈ [1, s]. In this paper, we consider k
edit errors. Hence, r + s ≤ k.

Example 3. (Follow-up of Example 1). Consider a 3 head
racetrack memory with adjacent head distance t = 2. Let the
deletion index set δ1 = {2, 5, 6}. Then, we have that δ2 =
{4, 7, 8} and δ3 = {6, 9, 10}. In addition, the insertion index
set is given by γ1 = {0, 2}. Then, we have γ2 = {2, 4}, and
γ3 = {4, 6}. Let b1 = (1, 1), b2 = (1, 0), b3 = (0, 1). Let
c = (1, 1, 0, 1, 0, 0, 0, 1, 0, 1) be a sequence of length 10. Then,
the read matrix is given by

E(c, δ1, δ2, δ3,γ1,γ2,γ3,b1,b2,b3)

=

1 1 1 0 1 0 1 0 1
1 1 1 0 0 0 0 0 1
1 1 0 1 0 0 1 0 1

 .

Define an edit ball Ek(c, t) of a sequence c ∈ {0, 1}n as
the set of all possible read matrices in an d-head racetrack
memory with input c and head distance t, i.e.,

Ek(c, t) = {E(c, δ1, . . . , δd,γ1, . . . ,γd,b1, . . . ,bd) :

δi+1 = δi + t,γi+1 = γi + t, for i ∈ [1, d],
and δi ⊆ [1, n], |δi| = r,γi ⊆ [0, n], |γi| = s,

bi ∈ {0, 1}s for i ∈ [1, d], r + s ≤ k, }.

A d-head k edit correction code C is the set of all sequences
such that the edit balls of any two do not intersect, i.e., for
any c, c′ ∈ C, Ek(c, t) ∩ Ek(c′, t) = ∅.

C. Lemmas

In this section we present lemmas that will be used through-
out the paper. Some of them are existing results. The following
lemma describes a systematic Reed-Solomon code that can
correct a constant number of erasures and can be efficiently
computed (See for example [17]).

Lemma 1. Let q be a power of 2 and let k and n be positive
integers that satisfy n + k ≤ q − 1. Then, there exists a
map RSk : Fnq → Fkq , computable in poly(n) time, such
that {(c, RSk(c)) : c ∈ Fnq } is a k erasure correcting code.

When q is the smallest power of 2 satisfying n + k ≤
q − 1, the Reed-Solomon code requires redundancy k log q =
k log n+o(log n) for correcting k erasures. Correcting a burst
of two erasures requires less redundancy when the alphabet
size of the code has order o(log n). The following code for
correcting consecutive two erasures will be used for the case
when the number of deletions k is less than 2d.

Lemma 2. Let q be a power of 2 and let n be a positive
integer. There exists a map ER : Fnq → F2

q , computable
in O(n) time, such that the code {(c, ER(c) : c ∈ Fnq } is
capable of correcting two consecutive erasures.

Proof. For a sequence c = (c1, . . . , cn) Let the code ER be
given by

ER(c) = (

b(n−1)/2c∑
i=0

c2i+1,

bn/2c∑
i=0

c2i),

which are the sums of symbols with odd and even indices
respectively over field Fq . Note that two consecutive erasures
are reduced to two single erasures, with one in the even
symbols and one in the odd symbols, which can be recovered
with the help of ER(c). Hence, (c, ER(c)) can be recovered
from two consecutive erasures.

Our construction uses an explicit deletion code construction
for a single read d = 1 as building blocks, which was
presented in [11].

Lemma 3. Let k be a fixed positive integer. For any positive
integers m and n, there exists an explicit mapping

H : {0, 1}m → {0, 1}d4k logm+o(logm)e,

SIMA AND BRUCK: CORRECTING MULTIPLE DELETIONS AND INSERTIONS IN RACETRACK MEMORY 5

computable in O(m2k+1) time, such that any sequence c ∈
{0, 1}m can be recovered from its length m− k subsequence
with the help of H(c).

We also use the following fact, proved in [7], which implies
that a deletion correcting code can be used to correct a
combination of deletions and insertions.

Lemma 4. A k-deletion correcting code is capable of cor-
recting a combination of r deletions and s insertions, where
r + s ≤ k.

Remark 4. Note that the lemma does not hold in general in
a multiple head racetrack memory considered in this paper.

In addition, in order to synchronize the sequence c in
the presence of deletions, we need to transform c to a
sequence that has a limited length constraint on its periodic
subsequences. Such constraint was considered in [3], where
it was proved that the redundancy of the code {c : L(c,≤
k) ≤ dlog ne + k + 1} is at most 1 bit. In the following
lemma we present a method to transform any sequence to
one that satisfies the length constraint. The redundancy of our
construction is k + 1 bits. However, it is small compared to
the redundancy of the d-head k-deletion code.

Lemma 5. For any positive integers k and n, there exists
an injective function F : {0, 1}n → {0, 1}n+k+1, computable
in Ok(n3 log n) time, such that for any sequence c ∈ {0, 1}n,
we have that L(F (c),≤ k) ≤ 3k + 2 + dlog ne.

Proof. Let 1x and 0y denote consecutive x 1’s and consecu-
tive y 0’s, respectively. The encoding procedure for comput-
ing F (c) is as follows.

1) Initialization: Let F (c) = c. Append (1k, 0) to the end
of the sequence F (c). Let i = 1 and n′ = n. Go to
Step 1.

2) Step 1: If i ≤ n′ − 2k − dlog ne − 1
and F (c)[i,i+2k+dlogne+1] has period p ≤ k, let pmin
be the smallest period of F (c)[i,i+2k+dlogne+1].
Delete F (c)[i,i+2k+dlogne+1] from F (c) and
append (1k−pmin , 0, F (c)[i,i+pmin−1], i,0

k+1) to
the end of F (c), i.e., set F (c)[i,n−k−dlogne−1] =
F (c)[i+2k+dlogne+2,n+k+1] and
F (c)[n−k−dlogne,n+k+1] = (1k−pmin , 0,
F (c)[i,i+pmin−1], i,0

k+1). Let n′ = n′−2k−dlog ne−2
and i = 1. Repeat. Else go to Step 2.

3) Step 2: If i ≤ n′ − 2k − dlog ne − 1, let i = i+ 1 and
go to Step 1. Else output F (c).

It can be verified that the length of the sequence F (c) remains
to be n + k + 1 during the procedure. The number n′ in the
procedure denotes the number such that F (c)[n′+1,n+k+1] are
appended bits and F (c)[1,n′] are the remaining bits in c after
deletions. Since either i increases to n′ or n′ decreases in
Step 1. The algorithm terminates within O(n2) times of Step 1
and Step 2. Since it takes O(k(3k+2+log n)n) time to check
the periodicity in Step 1. The total complexity is Ok(n3 log n).

We now prove that L(F (c),≤ k) ≤ 3k + 2 + dlog ne.
Let n′ be the number computed in the encoding
procedure. According to the encoding procedure, we have
that L(F (c)[j,j+2k+1+dlogne],≤ k) ≤ 2k + 1 + dlog ne

for j ≤ n′ − 2k − dlog ne − 1, since any
subsequence F (c)[j,j+2k+1+dlogne] with period not greater
than k is deleted. Therefore L(F (c)[j,j+3k+1+dlogne],≤ k) ≤
3k+ 1 + dlog ne for j ≤ n′− 2k−dlog ne− 1. For n′− 2k−
dlog ne ≤ j ≤ n′, the sequence F (c)[j,j+2k+1+dlogne]
contains F (c)[n′+1,n′+k+1] = (1k, 0), which does
not have period not greater than k. Hence we have
that L(F (c)[j,j+3k+1+dlogne],≤ k) ≤ 3k + 1 + dlog ne.
For j > n′, the sequence F (c)[j,j+3k+1+dlogne]
contains 0k+1 as k + 1 consecutive bits. Hence,
if L(F (c)[j,j+3k+1+dlogne],≤ k) = 3k + 2 + dlog ne,
we have that F (c)[j,j+3k+1+dlogne] = 03k+2+dlogne.
However, this is impossible since F (c)[j,j+3k+1+dlogne]
contains either the index i to the left of 0k+1 or the
bits (1k−pmin , 0, F (c)[i,i+pmin−1]) to the right of 0k+1,
both of which can not be all zero. Therefore, we conclude
that L(c,≤ k) ≤ 3k+ 2 + dlog ne. Given F (c), the decoding
procedure for computing c is as follows.

1) Initialization: Let c = F (c) and go to Step 1.
2) Step 1: If c[n+1,n+k+1] 6= (1k, 0), let j be the

length of the first 1 run in c[n−k−dlogne,n+k+1] and
let p be the decimal representation of cn−dlogne+1,n.
Let a be a sequence of length 2k + dlog ne + 2
and period k − j. The first k − j bits
of a is given by c[n−k−dlogne+j+1,n−dlogne].
Delete c[n−k−dlogne,n+k+1] from c and insert a
at index p of c, i.e., let c[p+2k+dlogne+2,n+k+1] =
c[p,n−k−dlogne−1] and c[p,p+2k+dlogne+1] = a. Repeat.
Else output c

Note that the encoding procedure consists of a series of
deleting and appending operations. The decoding procedure
consists of a series of deletion and inserting operations.
Let Fi(c), i ∈ [0, R] be the sequence F (c) obtained after
the ith deleting and appending operation in the encoding
procedure, where R is the number of deleting and append-
ing operations in total in the encoding procedure. We have
that F0(c) = c and FR(c) is the final output F (c). It can be
seen that the decoding procedure obtains FR−i(c), i ∈ [0, R]
after the ith deleting and inserting operation. Hence the
function F (c) is injective.

Finally, we restate one of the main results in [3] that will
be used in our construction. The result guarantees a procedure
to correct d−1 deletions in a d-head racetrack memory, given
that the distance between consecutive heads are large enough.

Lemma 6. Let k and d ≤ k be two positive integers and
let C be a (k − d + 1)-deletion code. Then for any positive
integer `, C ∩ {c : L(c,≤ k) ≤ `} is a d-head k-deletion
correcting code, given that the distance between consecutive
heads t ≥ `[k(k − 1)/2 + 1] + (7k − k3)/6.

III. CORRECTING UP TO 2d− 1 DELETIONS WITH d HEADS

In this section we construct a d-head k-deletion code for
cases when d ≤ k ≤ 2d − 1. To this end, we first present
a lemma that is crucial in our code construction. The lemma
states that the range of deletion indices can be narrowed down
to a list of short intervals. Moreover, the number of deletions

6 IEEE TRANSACTIONS ON INFORMATION THEORY

I1 IJ

D1,[1,n+R−k]

D2,[1,n+R−k]

D3,[1,n+R−k]

=

=

=

=

=

=

. . .

. . .

. . .

. . .

=

=

=

=

=

=

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

Fig. 2. An illustration of Lemma 7. The ∗ entries denote deletion in the heads. The read Di,[1,n+R] in each head is obtained after deleting the ∗ entries
from c.

within each interval can be determined. The proof of the
lemma will be given in Section IV. Before presenting the
lemma, we give the following definition, which describes a
property of the intervals we look for.

Definition 1. Let δi = {δi,1, . . . , δi,k} be the set of deletion
indices in the ith head of a d-head racetrack memory, i.e.
δi+1 = δi + t, for i ∈ [1, d − 1]. An interval I is deletion
isolated if

δi+1 ∩ I = t+ δi ∩ I,

for i ∈ [1, d− 1].

Example 4. Consider a 3-head racetrack memory with adja-
cent head distance t = 2. Let the length of the sequence c
be n = 22 and let the deletion positions in three heads be
given by

δ1 = {1, 2, 4, 9, 14, 17},
δ2 = {3, 4, 6, 11, 16, 19}, and

δ3 = {5, 6, 8, 13, 18, 21},

Then the intervals [1, 8], [9, 13], and [14, 22] are all deletion
isolated.

Intuitively, an interval I is deletion isolated when the
subsequences cI∩δci for i ∈ [1, d] can be regarded as the d
reads of a d-head racetrack memory with input cI after |δ1∩I|
deletions in each head.

Lemma 7. (Proofs appear in Section IV.) For any positive
integers n and R ≥ k + 1, let c ∈ {0, 1}n+R be a sequence
such that L(c[1,n+k+1],≤ k) ≤ 3k+ dlog ne+ 2 , T . Let the
adjacent head distance t satisfy t ≥ (4k + 1)(T + 2k + 1).
Then, given D ∈ Dk(c, t), it is possible to find a set of J ≤ k
disjoint and deletion isolated intervals Ij ⊆ [1, n + R], j ∈
[i, J] such that δw ⊂ ∪Jj=1Ij for w ∈ [1, d] and

|Ij ∩ [1, n+ k + 1]|
≤(2b(2t+ T + 1)/2c+ 1)kd+ b(2t+ T + 1)/2c+ k

,B, (3)

for j ∈ [1, J]. Moreover, |δ1 ∩ Ij | can be determined for j ∈
[1, J].

An illustration of Lemma 7 is shown in Fig. 2. Since the
interval Ij is deletion isolated for j ∈ [1, J], all rows of D
are aligned in indices [1, n + R]\(∪Jj=1Ij), i.e., the entries
in the ith column of D correspond to the same bit in c for
i ∈ [1, n + R]\(∪Jj=1Ij). Let c ∈ {0, 1}n+R be a sequence
satisfying L(c[1,n+k+1],≤ k) ≤ T . By virtue of Lemma 7,
the bit ci can be determined by

ci = D1,i−
∑

j:Ij⊆[1,i−1] |δ1∩Ij | (4)

for i ∈ [1, n + k + 1]\(∪Jj=1Ij). In addition, let Ij =
[bminj , bmaxj] for j ∈ [1, J] such that bmaxj−1 < bminj for
j ∈ [2, J]. Since Ij is deletion isolated for j ∈ [1, J], the
submatrix

D[1,d],[bmin
j −

∑j−1
i=1 |δ1∩Ii|,bmax

j −
∑j

i=1 |δ1∩Ii|]

∈D|δ1∩[bmin
j ,bmax

j]|(cIj , t)

can be regarded as the d reads of the d-head racetrack memory
with input cIj . According to Lemma 6, the bits cIj with |δ1∩
Ij | < d can be recovered from

D[1,d],[bmin
j −

∑J
i=j+1 |δ1∩Ii|,bmax

j −
∑J

i=j |δ1∩Ii|]

if the adjacent head distance satisfies t ≥ T [k(k−1)/2+1]+
(7k − k3)/6. Note that there is at most a single interval Ij1
satisfying |δ1 ∩Ij1 | ≥ d when k ≤ 2d− 1. Hence, we are left
to recover interval Ij1 .

Split c[1,n+k+1] into blocks

ai = c[(i−1)B+1,min{iB,n+k+1}], i ∈ [1, d(n+ k + 1)/Be]
(5)

of length B (defined in (3)) except that ad(n+k+1)/Be may
have length shorter than B. Since |Ij1 ∩ [1, n+ k + 1]| ≤ B,
the interval Ij1 spans over at most two blocks aj′1 and aj′1+1.
It then follows that there are at most two consecutive blocks,
where Ij1 lies in, that remain to be recovered. Moreover, at
most k deletions occur in interval Ij1 , and hence in blocks aj′1
and aj′1+1.

SIMA AND BRUCK: CORRECTING MULTIPLE DELETIONS AND INSERTIONS IN RACETRACK MEMORY 7

For a positive integer n and a sequence c ∈ {0, 1}n+k+1

of length n + k + 1, let the mapping S : {0, 1}n+k+1 →
Fd(n+k+1)/Be

4k logB+o(logB) be defined by

S(c) = (H(a1), H(a2), . . . ,H(ad(n+k+1)/Be)), (6)

where ai, i ∈ [1, d(n+k+ 1)/Be] are the blocks of c defined
in Eq. (5). The mapping H(ad(n+k+1)/Be), given in Lemma
3, takes the input ad(n+k+1)/Be of length at most B. The
sequence S(c) is a concatenation of the mappings H of blocks
of c.

Lemma 8. For constant positive integers k, d, and B defined
in (3), there exists a function

DecS :{0, 1}n+1 × {0, 1}d(n+k+1)/Be(4k logB+o(logB))

→ {0, 1}n+k+1,

such that for any sequence c ∈ {0, 1}n+k+1 and its length n+
1 subsequence d ∈ {0, 1}n+1, we have that DecS(d, S(c)) =
c, i.e., the sequence c can be recovered from k deletions with
the help of S(c).

Proof. Note that d[(i−1)B+1,min{iB,n+k+1}−k] is a length B−
k subsequence of the block ai for i ∈ {1, . . . , d(n + k +
1)/Be}. According to Lemma 3, the block ai can be recovered
from d(i−1)B+1,max{iB,n+k+1}−k with the help of H(ai).
Thus the sequence c can be recovered.

We are now ready to present the code construction. For any
sequence c ∈ {0, 1}n, define the following encoding function:

Enc1(c) = (F (c), R
′

1(c), R
′′

1 (c)) (7)

where

R
′

1(c) = ER(S(F (c))),

R
′′

1 (c) = Repk+1(H(R′1(c))), (8)

and the function Repk+1 is a k + 1-fold repetition function
that repeats each bit k+ 1 times. The mapping ER is defined
in Lemma 2 to correct two consecutive symbol erasures
in S(F (c)), and the mapping F (c) ∈ {0, 1}n+k+1 is defined
in Lemma 5, to obtain a sequence satisfying L(F (c),≤ k) ≤
T so that Lemma 7 can be applied. The redundancy consists
of two layers. The function R

′

1(c) can be regarded as the
first layer redundancy, with the help of which F (c) can
be recovered from k deletions. It computes the redundancy
ER(S(F (c))) that can be used to recover S(F (c)). According
to Lemma 8, the recovered S(F (c)) can be then used to
recover F (c). The function R

′′

1 (c) can be regarded as the
second layer redundancy that helps recover itself and R

′

1(c)
from k deletions.

The length of R
′

1(c) is given by N1 = 8k logB +
o(logB) = 8k log t + o(log t). The length of R

′′

1 (c) is N2 =
4k(k + 1) logN1 + O(1) = o(log t). The length of the
codeword Enc1(c) is given by N = n+ k + 1 +N1 +N2 =
8k log t + o(log t). The next theorem proves Theorem 1 for
cases when d ≤ k ≤ 2d− 1.

Theorem 3. The set C1 = {Enc1(c) : c ∈ {0, 1}n} is a d-
head k-deletion correcting code for d ≤ k ≤ 2d − 1, if the

adjacent head distance t satisfies t ≥ max{(3k + dlog ne +
2)[k(k − 1)/2 + 1] + (7k − k3)/6, (4k + 1)(5k + dlog ne +
3)}, i ∈ [1, d− 1]. The code C1 can be constructed, encoded,
and decoded in O(nt2k+1 + poly(n)) time. The redundancy
of C1 is N − n = 8k log t+ o(log t).

Proof. For any D ∈ Dk(c, t), let d = D1,[1,N−k] be the first
row of D, i.e., the first read. The sequence d is a length N−k
subsequence of Enc1(c). We first show how to recover R

′

1(c)
from d. Note that d[N−N2+1,N−k] is a length N2 − k sub-
sequence of R

′′

1 (c), the k + 1-fold repetition of H(R
′

1(c)).
Since a k + 1-fold repetition code is a k-deletion code, the
mapping H(R

′

1(c)) can be recovered. Furthermore, we have
that d[n+k+2,n+k+1+N1−k] is a length N1 − k subsequence
of R

′

1(c). Hence according to Lemma 3, we can obtain R
′

1(c)
from d[n+k+2,n+k+1+N1−k], with the help of H(R

′

1(c)).
Next, we show how to use R

′

1(c) to recover F (c). Note
that L(F (c),≤ k) ≤ T . From Lemma 7 and the discussion
that follows, we can separate F (c) into blocks ai, i ∈
[1, d(n+K+1)/Be], of length B, and identify a set of deletion
isolated intervals {Ij}Jj=1 that contain all the deletion indices
in all reads. We then use (4) to recover the bits with indices
outside the intervals {Ij}Jj=1. Then, we apply Lemma 6 to
correct the errors in intervals Ij such that |δ1 ∩ Ij | < d.
Note that there is at most one interval Ij′ with at least d
deletions, where j′ can be determined by looking for the
unique interval Ij′ such that |Ij′ ∩ δ1| ≥ d (Note that
|Ij′ ∩ δ1| is known by Lemma 7.). The interval Ij′ covers
at most two consecutive blocks aj1 and aj1+1, where the
index j1 is known. This implies that S(F (c)) can be retrieved
with consecutive at most two symbol erasures, the position
of which can be identified. Hence, we can use R

′

1(c) to
recover S(F (c)) and find the mapping H(aj1) and H(aj1+1),
since R

′

1(c) = ER(S(F (c))) corrects the two consecutive
symbol errors in S(F (c)) by Lemma 2. Note that D1,[1,n+1]

is a length n+1 subsequences of F (c). Hence from Lemma 8
the sequence F (c) and thus c can be recovered given S(F (c)).
The computation of S(F (c)), which computes O(n/B) times
the mapping H(ai), [1, d(n + k + 1)/Be], constitutes the
main part of the computation complexity of Enc1(c). Since
the computation of H(ai) takes O(B2k+1) = O(t2k+1) time
for each i ∈ [1, d(n + K + 1)/Be] and computing F (c)
requires O(poly(n)) time, it takes O(nt2k+1 + poly(n)) time
to compute Enc1(c).

IV. PROOF OF LEMMA 7

Let D ∈ Dk(c, t) be the d reads from all heads, where c ∈
{0, 1}n+R satisfies L(c[1,n+k+1],≤ k) ≤ T . Then D is
a d by n + R − k matrix. The proof of Lemma 7 consists
of two steps. The first step is to identify a set of disjoint
intervals I∗j , j ∈ [1, J] that satisfy
(P1) There exist a set of disjoint and deletion isolated inter-

vals Ij , j ∈ [1, J], such that Dw,I∗j = cIj∩δcw for w ∈
[1, d] and j ∈ [1, J], i.e., the subsequence Dw,I∗j comes
from cIj in the wth read after deleting cIj∩δw .

(P2) J ≤ k and δw ⊆ ∪Jj=1Ij for w ∈ [1, d].
(P3) |I∗j ∩ [1, n+ 1]| ≤ B − k

8 IEEE TRANSACTIONS ON INFORMATION THEORY

The algorithm for finding intervals I∗j , j ∈ [1, J] is given in
Algorithm 2. The second step is to determine the number of
deletions |δw∩Ij | for w ∈ [1, d] and j ∈ [1, J], that happen in
each interval in each head, based on D[1,d],I∗j . The algorithm
for determining |δw ∩ Ij |, w ∈ [1, d] and j ∈ [1, J] is given
in Algorithm 3. Then we have that

Ij = [i2j−1 +

j−1∑
`=1

|δ1 ∩ I`|, i2j +

j∑
`=1

|δ1 ∩ I`|], (9)

where i2j−1 and i2j are the starting and ending points of
the interval I∗j . It is assumed that ij > il for j > l.
The disjointness of Ij , j ∈ [1, J] follows from the fact
that I∗j , j ∈ [1, J] are disjoint. The algorithm for finding
the intervals Ij , j ∈ [1, J], for Lemma 7 is summarized in
Algorithm 1.

Algorithm 1: Finding intervals Ij , j ∈ [1, J]

Input: The read matrix D ∈ Dk(c, t). Output: The
intervals Ij , j ∈ [1, J], described in Lemma 7

Step 1: Apply Algorithm 2 to obtain intervals
I∗j = [i2j−1, i2j], j ∈ [1, J]. Go to Step 2;

Step 2: Apply Algorithm 3 to compute
|δw ∩ Ij |, w ∈ [1, d] and j ∈ [1, J]. Go to Step 3;
Step 3: Output the intervals Ij , j ∈ [1, J], computed by
(9);

In the following two subsections, we present the details of
Algorithm 2 and Algorithm 3, respectively.

Algorithm 2: Finding Intervals {I∗j }Jj=1

Input: The read matrix D ∈ Dk(c, t). Output: Intervals
{I∗j }Jj=1 satisfying properties (P1), (P2), and
(P3)

Initialization: Set all integers m ∈ [1, n+R− k]
unmarked. Let i = 1. Find the largest positive
integer L such that the sequences Dw,[i,i+L−1]

are equal for all w ∈ [1, d]. If such L exists and
satisfies L > t, mark the integers m ∈ [1, L− t]
and go to Step 1. Otherwise, go to Step 1;

Step 1: Find the largest positive integer L such that the
sequences Dw,[i,i+L−1] are equal for all w ∈ [1, d]. Go
to Step 2. If no such L is found, set L = 0 and go to
Step 2;
Step 2: If L ≥ 2t+ T + 1, mark the integers
m ∈ [i+ t,min{i+L− 1, n+ 1} − t]. Set i = i+L and
go to Step 3. Else i = i+ 1 and go to Step 3;
Step 3: If i ≤ n+ 1, go to Step 1. Else go to Step 4;
Step 4: If the number of unmarked intervals (An
unmarked interval [i, j] means that m ∈ [i, j] are not
marked and i− 1 and j + 1 are marked. It is assumed
that 0 and n+R− k+ 1 are marked.) within [1, n+ 1] is
not greater than k, output all unmarked intervals. Else
output the first k intervals, i.e., the intervals with the
minimum k starting indices;

A. Identifying Intervals I∗j

We prove that the output intervals I∗1 , . . . , I∗J of Algorithm
2 satisfy the above constraints (P1), (P2), and (P3). The
following lemma will be used.

Lemma 9. Let D ∈ Dk(c, t) for some sequence c satisfy-
ing L(c[1,n+k+1],≤ k) ≤ T . Let the adjacent head distance t
satisfy t ≥ k(T + 1) + 1. If the sequences Dw,[i1,i2] are equal
for all w ∈ [1, d] in some interval [i1, i2] ⊆ [1, n + 1] with
length i2− i1 +1 ≥ 2t+T +1, then no deletions occur within
bits Dw,[i1+t,i2−t] for all w, i.e., there exist integers i′1 =
i1 + t+ |δj ∩ [1, i′1 − 1]| and i′2 = i2 − t+ |δj ∩ [1, i′2 − 1]|,
such that c[i′1,i

′
2] = Dw,[i1+t,i2−t] and [i′1, i

′
2]∩δw = ∅ for w ∈

[1, d]. In addition, both intervals [1, i′1−1] and [i′2 +1, n+R]
are deletion isolated.

Proof. Let ci′0 , ci′1 , ci′2 , and ci′3 be the bits that be-
come D1,i1 , D1,i1+t, D1,i2−t, and D1,i2 respectively after
deletions, i.e., i′0 − |δ1 ∩ [1, i′0 − 1]| = i1, i′1 − |δ1 ∩
[1, i′1 − 1]| = i1 + t, i′2 − |δ1 ∩ [1, i′2 − 1]| = i2 − t,
and i′3−|δ1∩[1, i′3−1]| = i2. We show that no deletions occur
within Dw,[i1,i2−t] for w ∈ [1, d − 1] or within Dw,[i1+t,i2]

for w ∈ [2, d], i.e., δw ∩ [i′0, i
′
2] = ∅ for w ∈ [1, d − 1],

and δw ∩ [i′1, i
′
3] = ∅ for w ∈ [2, d].

Suppose on the contrary, there are deletions
within Dw,[i1,i2−t] for w ∈ [1, d − 1]. Then there exist
some w1 ∈ [1, d−1] and k1 ∈ [1, k], such that δw1,k1 ∈ [i′0, i

′
2]

(recall that δw1,k1 is the index of the k1th deletion in the w1th
read). Then we have that δw1+1,k1 = δw1,k1 +t ∈ [i′0, i

′
3]. Note

that there are k − k1 deletions {δw1,k1+1, . . . , δw1,k} to the
right of δw1,k1 and k1−1 deletions {δw1+1,1, . . . , δw1+1,k1−1}
to the left of δw1+1,k1 . Hence we have that

|(δw1
∪ δw1+1) ∩ [δw1,k1 + 1, δw1,k1 + t− 1]|

≤|(δw1
∪ δw1+1) ∩ [δw1,k1 + 1, δw1+1,k1 − 1]|

≤k − k1 + k1 − 1

=k − 1,

meaning that there are at most k − 1 deletions in the w1th or
(w1 +1)th heads that lie in interval [δw1,k1 +1, δw1,k1 + t−1].
Since t ≥ k(T + 1) + 1, there are at least k disjoint intervals
of length T+1 that lie in interval [δw1,k1 +1, δw1,k1 +t−1]. It
then follows that there exists an interval [i′, i′+T] ⊂ [δw1,k1 +
1, δw1,k1 + t − 1] such that [i′, i′ + T] ∩ (δw1

∪ δw1+1) = ∅.
Let l′1 = |δw1

∩ [1, i′ − 1]| and l′2 = |δw1+1 ∩ [1, i′ − 1]| be
the number of deletions in heads w1 and w1 + 1, respectively
that is to the left of i′. We have that l′1 > l′2 since δw1,k1 < i′

and δw1+1,k1 > i′ + T . Since [i′, i′ + T]∩ (δw1 ∪ δw1+1) = ∅
and l′1 − l′2 ≤ k < T , we have that

l′1 =|δw1
∩ [1, i′ − 1]|

=|δw1
∩ [1, i′ + l′1 − l′2 − 1]|

=|δw1
∩ [1, i′ + T − 1]|, and

l′2 =|δw1+1 ∩ [1, i′ − 1]|
=|δw1+1 ∩ [1, i′ + T + l′2 − l′1 − 1]|.

SIMA AND BRUCK: CORRECTING MULTIPLE DELETIONS AND INSERTIONS IN RACETRACK MEMORY 9

Therefore,

c[i′+l′1−l′2,i′+T]

=Dw1,[i′+l′1−l′2−|δw1∩[1,i′+l′1−l′2−1]|,i′+T−|δw1∩[1,i′+T−1]|]

=Dw1,[i′−l′2,i′+T−l′1]

=Dw1+1,[i′−l′2,i′+T−l′1]

=Dw1+1,[i′−|δw1+1∩[1,i′−1]|,i′+T+l′2−l′1−|δw1+1∩[1,i′+T+l′2−l′1−1]|]

=c[i′,i′+T+l′2−l′1],

which implies that L(c[i′,i′+T], l
′
1 − l′2) = T + 1 > T .

Since [i′, i′+T] ⊂ [i′0, i
′
3] ⊂ [1, n+k+1], this is a contradiction

to the assumption that L(c[1,n+k+1], l
′
1 − l′2) ≤ T . Therefore,

there are no deletions within Dw,[i1,i2−t] for w ∈ [1, d − 1],
i.e., δw ∩ [i′0, i

′
2] = ∅ for w ∈ [1, d − 1]. Similarly, we have

that δw ∩ [i′1, i
′
3] = ∅ for w ∈ [2, d]. Since [i′1, i

′
2] ⊂ [i′0, i

′
2]

and [i′1, i
′
2] ⊂ [i′1, i

′
3], it follows that

[i′1, i
′
2] ∩ δw = ∅ (10)

and hence c[i′1,i
′
2] = Dw,[i1+t,i2−t] for w ∈ [1, d].

Next we show that the intervals [1, i′1 − 1] and [i′2 + 1, n+
R] are deletion isolated. Suppose on the contrary, there exists
some w2 ∈ [1, d] for which (δw2

∩ [1, i′1− 1]) + t 6= (δw2+1 ∩
[1, i′1 − 1]). Then we have that |δw2 ∩ [1, i′1 − 1]| > |δw2+1 ∩
[1, i′1 − 1]|. Let x = |δw2 ∩ [1, i′1 − 1]| − |δw2+1 ∩ [1, i′1 − 1]|,
then,

c[i′1,i
′
2−x]

(a)
=Dw2,[i1+t+|δw2∩[1,i′1−1]|,i2−t−x+|δw2∩[1,i′2−x−1]|]

=Dw2+1,[i1+t+|δw2∩[1,i′1−1]|,i2−−x+|δw2∩[1,i′2−x−1]|]

=Dw2+1,[i1+t+x+|δw2+1∩[1,i′1−1]|,i2−t+|δw2+1∩[1,i′2−1]|]
(b)
=c[i′1+x,i′2], (11)

where (a) and (b) hold since we have E.q. (10). This implies
that

L(ci′1,i′2 , x) =i′2 − i′1 + 1

(a)

≥ i2 − i1 − 2t+ 1

≥T + 1,

where (a) holds since c[i′1,i
′
2] = Dw,[i1+t,i2−t]. This contra-

dicts to the fact that L(c[1,n+k−1],≤k) ≤ T . Therefore, the
interval [1, i′1−1] is deletion islolated. Similarly, [i′2+1, n+R]
is deletion isolated.

In the following, we show that the output intervals satisfy
(P1), (P2), and (P3), respectively. Let [p2j−1, p2j], j ∈ [1, J ′]
be the marked intervals in the algorithm, where p1 < . . . <
p2J′ . Let p0 = 0 and p2J′+1 = n + R + 1 − k, then the
output intervals are the leftmost up to k nonempty intervals
among {[p2j +1, p2j+1−1]}J′j=0. Note that from the marking
operation in the Initialization step and Step 2 in Algorithm 2,
the interval [n+ 1− t, n+R− k] is not marked. In addition,
for any j ∈ [1, J ′], sequences Dw,[p2j−1,p2j] are equal for

all w ∈ [1, d]. Hence, according to Lemma 9, there exist
intervals [p′2j−1, p

′
2j], j ∈ [1, J ′], where

p′j = pj + |δw ∩ [1, p′j − 1]|, and

[p′2`−1, p
′
2`] ∩ δw = ∅, (12)

for all j ∈ [1, 2J ′], ` ∈ [1, J ′], and w ∈ [1, d]. In addition,
intervals [1, p′2j−1 − 1] are deletion isolated3 for j ∈ [1, J ′].
It follows that [p′2j−1, p

′
2j+1 − 1] is deletion isolated for j ∈

[1, J ′], where p′2J′+1 = n+R+1. Since [p′2j−1, p
′
2j]∩δw = ∅

for j ∈ [1, J ′] and w ∈ [1, d], then we have that the
intervals [p′2j + 1, p′2j+1 − 1], j ∈ [0, J ′], where p′0 = 0
and p′2J+1 = n + R + 1, are deletion isolated. From (12)
we have that Dw,[p2j+1,p2j+1−1] = c[p′2j+1,p′2j+1−1]∩δcw . In
addition, the intervals {[p′2j + 1, p′2j+1 − 1]}J′j=0 are disjoint
since

(p′2(j+1) + 1)− (p′2j+1 − 1)

=p2(j+1) + |δw ∩ [1, p′2(j+1) − 1]|+ 2

− p2j+1 − |δw ∩ [1, p′2j+1 − 1]|
(a)

≥T + |δw ∩ [1, p′2(j+1) − 1]| − |δw ∩ [1, p′2j+1 − 1]|
≥T − k > 0,

for j ∈ [0, J ′ − 1], where (a) follows from the fact that
marked intervals have length at least T . Therefore, the output
intervals {[p2j + 1, p2j+1 − 1]}J′j=0 satisfy (P1).

Next, we show that the output intervals satisfy (P2). For any
output interval [p2j + 1, p2j+1−1] with [p2j + 1, p2j+1−1] ⊆
[1, n+ 1− t], the corresponding interval [p′2j + 1, p′2j+1 − 1]
contains at least one deletion in δw, i.e., [p′2j + 1, p′2j+1 −
1] ∩ δw 6= ∅, for some w ∈ [1, d]. Otherwise, we have
that [p′2j′ + 1, p′2j′+1− 1]∩ δw = ∅ for w ∈ [1, d] for some j′.
Combining with (12) and the fact that intervals [1, p′2j−1 − 1]
are deletion isolate for j ∈ [1, J ′], it follows that the se-
quences Dw,[p2j′+1,p2j′+1−1] are equal for w ∈ [1, d]. This
implies that the interval [p2j′+1, p2j′+1−1] is marked during
the procedure, which is a contradiction to the fact that [p2j′ +
1, p2j′+1−1] is not marked. Therefore, there are at most k un-
marked intervals that lie within the interval [1, n+1]. Note that
there is one unmarked interval containing [n+1−t, n+R−k]
that does not lie in [1, n + 1]. It follows that there are at
most k+ 1 unmarked intervals in total. When there are k+ 1
unmarked intervals, the deletions δw are contained in the k
output intervals since each output interval within [1, n + 1]
contains at least one deletion. When there are no more than k
intervals, the deletions are contained in the unmarked output
intervals since the marked intervals do not contain deletions.
Therefore we have that δw ⊆ {[p2j + 1, p2j+1 − 1]}Jj=1,
where {[p2j + 1, p2j+1 − 1]}Jj=1 are the output intervals
and J ≤ k.

Finally, we show that |I∗j ∩[1, n+1]| ≤ B−k for j ∈ [1, J],
which is (P3). We first prove that for any unmarked index i ∈
[1, n+1−bt+(T+1)/2c], there exist some w ∈ [1, d] and k1 ∈

3The interval [p1, p2] may be marked in the Initialization step in Algorithm
2 and have length less than T + 2t + 1. In that case, apply Lemma 9 by
considering an interval [−t+T +1, 0] where Dw,[−t+T+1,0] are equal for
w ∈ [1, d].

10 IEEE TRANSACTIONS ON INFORMATION THEORY

[1, k], such that a deletion at δw,k1 occurs within distance bt+
(T + 1)/2c to the bit ci′=i+|δw∩[1,i′−1]| that becomes Dw,i,
i.e., δw,k1 ∈ [i′ − bt + (T + 1)/2c, i′ + bt + (T + 1)/2c]4.
Otherwise, we have that [i′ − bt+ (T + 1)/2c, i′ + bt+ (T +
1)/2c]∩δw = ∅ for w ∈ [1, d]. Since [i′−bt+(T+1)/2c, i′+
bt + (T + 1)/2c] has length more than t for w ∈ [1, d], we
have that δw+1,j = δw,j + t ∈ [1, i′−bt+ (T + 1)/2c− 1] for
every δw,j + t ∈ [1, i′ − bt+ (T + 1)/2c − 1]. It follows that
[1, i′−bt+(T +1)/2c−1] is deletion isolated. Therefore, we
have that

Dw,[i−bt+(T+1)/2c,i+bt+(T+1)/2c]

=c[i−bt+(T+1)/2c+|δw∩[i′−1]|,i+bt+(T+1)/2c+|δw∩[i′−1]|]

=c[i′−bt+(T+1)/2c,i′+bt+(T+1)/2c]

are equal for all w ∈ [1, d], which means that the interval [i−
bt+(T+1)/2c, i+bt+(T+1)/2c] and thus the index i should
be marked. Therefore, every unmarked index i ∈ [1, n + 1 −
bt+ (T + 1)/2c] is associated with a deletion index δw,k1 that
is within distance bt+ (T + 1)/2c to i′ = i+ |δw ∩ [1, i′−1]|.
On the other hand, any deletion δw,k1 is associated with at
most 2b(2t+ T + 1)/2c+ 1 unmarked indices. Therefore, the
number of unmarked bits within [1, n+1−bt+(T +1)/2c] is
at most (2b(2t+T + 1)/2c+ 1)kd. The number of unmarked
bits within [1, n+ 1] is at most (2b(2t+ T + 1)/2c+ 1)kd+
b(2t+ T + 1)/2c = B − k.

B. Determining the Number of Deletions

In this subsection we present Algorithm 3 for determining
the number of deletions |δw ∩ Ij |, w ∈ [1, d], for any
deletion isolated interval Ij ⊆ [1, n + k + 1]. Fix j. The
input for this algorithm are the reads D[1,d],I∗j obtained by
deleting cδw∩Ij , w ∈ [1, d] from cIj . The interval I∗j is the
jth output interval obtained from Algorithm 2. Note that Ij
is not known at this point. In the algorithm only the first
two reads D[1,2],I∗j are used. Let Ij = [bmin, bmax] for
some positive integers bmin and bmax. Consider the following
intervals,

Bi,m = [bmin + (i− 1)t+ (m− 1)(T + 2k + 1),

min{bmin + (i− 1)t+m(T + 2k + 1)− 1, bmax}],
for i ∈ [1, d(bmax − bmin + 1)/te] and m ∈ [1,min{4k + 1,

d((bmax − bmin + 1) mod t)/(T + 2k + 1)e}]

The intervals Bi,m are disjoint and have length T +2k+1 ex-
cept when i = d(bmax−bmin+1)/te and m = mind((bmax−
bmin + 1) mod t)/(T + 2k + 1)e the length might be less.
Let Um = ∪iBi,m be the union of intervals Bi,m with the
same m for m ∈ [1, 4k+ 1]. Then the unions Um are disjoint
since t ≥ (4k + 1)(T + 2k + 1). Since the deletions occur in
at most 2k positions in the first two heads, at least 2k + 1
unions {Um1

, . . . ,Um2k+1
} satisfy Uml

∩ (δ1 ∪ δ2) = ∅
for l ∈ [1, 2k + 1].

4When i′ − bt+ (T + 1)/2c < 0, consider bits Dw,[i′−bt+(T+1)/2c,0]
that are equal for w ∈ [1, d]

Similarly, let I∗j = [b′min, b
′
max] for some positive inte-

gers b′min and b′max. Define the intervals

B′i,m = [b′min + (i− 1)t+ (m− 1)(T + 2k + 1),

min{b′min + (i− 1)t+m(T + 2k + 1)− k − 1, b′max}],
for i ∈ [1, d(b′max − b′min + 1)/te] and m ∈ [1,min{4k + 1,

d((b′max − b′min + 1) mod t)/(T + 2k + 1)e}] (13)

Then Bi,m are disjoint length T + k + 1 intervals except
when i = d(b′max − b′min + 1)/te and m = min{4k +
1, d((b′max − b′min + 1) mod t)/(T + 2k + 1)e} the length
might be less. Let

IM′ ={(i,m) : |B′i,m| = T + k + 1} (14)

be the set of (i,m) pairs for which B′i,m has length T +k+1.
Since |I∗j | = |Ij | − |Ij ∩ δw| for w ∈ [1, d], we have that

b′max − b′min + 1 = |I∗j | ≤ |Ij | = bmax − bmin + 1

It follows that Bi,m 6= ∅ when (i,m) ∈ IM′. For notation
convenience, let pi,m and qi,m be the beginning and end points
of interval Bi,m, i.e., Bi,m = [pi,m, qi,m] for (i,m) ∈ IM′.
Similarly, let B′i,m = [p′i,m, q

′
i,m] for (i,m) ∈ IM′.

Algorithm 3: Determine the number of deletions
Input: The read matrix D ∈ Dk(c, t) and the output

intervals {I∗j }Jj=1 of Algorithm 2
Output: |δ1 ∩ Ij |, j ∈ [1, J]
Step 1: Compute the intervals B′i,m = [p′i,m, q

′
i,m] using

(13) and compute IM′ using (14), i,m ∈ IM′. Go to
Step 2;

Step 2: For all (i,m) ∈ IM′, find a unique
integer 0 ≤ xi,m ≤ k such
that D1,[p′i,m,q

′
i,m−xi,m] = D2,[p′i,m+xi,m,q′i,m]. If no or

more than one such integers exist, let xi,m = 0. Go to
Step 3;

Step 3: For all m ∈ [1, 4k + 1], compute the
sum sm =

∑
i:(i,m)∈IJ ′ xi,m. Go to step 4;

Step 4: Output the majority among {sm}4k+1
m=1 ;

We now show that Algorithm 3 outputs |Ij ∩δ1|. It suffices
to show that the term sml

= |Ij ∩ δ1| for l ∈ [1, 2k + 1]
in Algorithm 3. First, we show that the unique integer xi,ml

satisfying D1,[p′i,ml
,q′i,ml

−xi,ml
] = D2,[p′i,ml

+xi,ml
,q′i,ml

] ex-
ists for l ∈ [1, 2k + 1] and i such that (i,ml) ∈ IM′.
Moreover, the integer xi,ml

equals |δ1 ∩ [p1,1, pi,ml
− 1]| −

|δ2 ∩ [p1,1, pi,ml
− 1]|, the difference between the num-

ber of deletions in the first two heads that happen before
the interval Bi,ml

. Recall that ml satisfies Uml
∩ δw =

∅ for w ∈ {1, 2} and that Dw,p′1,1
= Dw,b′min

comes
from cbmin = cp1,1 after deletions for w ∈ {1, 2}.
Hence, the bit Dw,p′i,ml

comes from cpi,ml
+|δw∩[p1,1,,pi,ml

−1]|
after deletions for w ∈ {1, 2}, by definitions of
pi,m and p′i,m. In addition, Dw,[p′i,ml

,q′i,ml
] comes from

c[pi,ml
+|δw∩[p1,1,,pi,ml

−1]|,pi,ml
+|δw∩[p1,1,,pi,ml

−1]|+T+k]. Let

SIMA AND BRUCK: CORRECTING MULTIPLE DELETIONS AND INSERTIONS IN RACETRACK MEMORY 11

x = |δ1 ∩ [p1,1, pi,ml
− 1]| − |δ2 ∩ [p1,1, pi,ml

− 1]|, we have
that

D1,[p′i,ml
,q′i,ml

−x]

=c[pi,ml
+|δ1∩[p1,1,pi,ml

−1]|,pi,ml
+|δ1∩[p1,1,pi,ml

−1]|+T+k−x]

=D2,[p′i,ml
+x,q′i,ml

]. (15)

Therefore, the integer xi,ml
= x satis-

fies D1,[p′i,ml
,q′i,ml

−xi,ml
] = D2,[p′i,ml

+xi,m,q′i,ml
]. We show

this xi,ml
is unique. Suppose there exists another integer y > x

for which D1,[p′i,ml
,q′i,ml

−y] = D2,[p′i,ml
+y,q′i,ml

]. For notation
convenience, denote

P (i,ml) , pi,ml
+ |δ1 ∩ [p1,1, pi,ml

− 1]|.

Then we have that

D1,[p′i,ml
,q′i,ml

−y]

=D2,[p′i,ml
+y,q′i,ml

]

(a)
=D1,[p′i,ml

+y−x,q′i,ml
−x]

=c[P (i,ml)+y−x,P (i,ml)+T+k−x],

where (a) follows from Eq. (15). Since,

D1,[p′i,ml
,q′i,ml

−y] = c[P (i,ml),P (i,ml)+T+k−y],

it follows that

c[P (i,ml)+y−x,P (i,ml)+T+k−x] = c[P (i,ml),P (i,ml)+T+k−y].

It then follows that

L(c[P (i,ml),P (i,ml)+T+k−x], y − x)

=T + k − x+ 1 ≥ T + 1,

which is a contradiction to the fact that L(c,≤ k) ≤ T .
Similarly, such contradiction occurs when y < x. Hence
such xi,ml

is unique.
Next, we show that sml

= |δ1 ∩ Ij | for l ∈ [1, 2k + 1].
Since pi,ml

− pi−1,ml
= t for i ∈ [2,max(i,ml)∈IM′ i], we

have that

|δ1 ∩ [p1,1, pi,ml
− 1]|

=|δ1 ∩ [p1,1, p1,ml
− 1]|+

i−1∑
w=1

|δ1 ∩ [pw,ml
, pw+1,ml

− 1]|

(a)
= |δ2 ∩ [p2,1, p2,ml

− 1]|+
i−2∑
w=1

|δ2 ∩ [pw+1,ml
, pw+2,ml

− 1]|

+ |δ1 ∩ [pi−1,ml
, pi,ml

− 1]|
=|δ2 ∩ [p2,1, pi,ml

− 1]|+ |δ1 ∩ [pi−1,ml
, pi,ml

− 1]|
(b)
= |δ2 ∩ [p1,1, pi,ml

− 1]|+ |δ1 ∩ [pi−1,ml
, pi,ml

− 1]|,

where (a) hold since |δ1 ∩ [p1,1, p1,ml
− 1]| = |δ2 ∩

[p2,1, p2,ml
− 1]| and |δ1 ∩ [pw−1,ml

, pw,ml
− 1]| = |δ2 ∩

[pw,ml
, pw+1,ml

−1]| for w ∈ [2, i−1]. Equality (b) holds since
Ij is deletion isolated and hence δ2∩[p1,1, p2,1−1] = ∅. It then
follows that xi,ml

= |δ1 ∩ [pi−1,ml
, pi,ml

− 1]| (p0,ml
= p1,1)

and that

sml
= |δ1 ∩ [p1,1, pmax(i,ml)∈IM′

i,ml
− 1]|

Note that δ1 ∩ [pmax(i,m)∈IM′ i,ml
, bmax] ⊆ δ1 ∩ [bmax − t +

1, bmax]. Since δ1 ∩ [bmax − t + 1, bmax] = ∅ because Ij
is deletion isolated, we have that sml

= |δ1 ∩ Ij |. Then the
majority rule works.

V. CORRECTING k ≥ 2d DELETIONS

In this section we present the code for correcting k ≥
2d deletions as well as a lower bound on the redundancy
when t = no(1). The code construction is similar to the one
presented in Section III. We use Lemma 7 to identify the
deletion indices within a set of disjoint intervals Ij , each
with length no more than B. Note that in order to apply
Lemma 7, the sequence c ∈ {0, 1}n has to be transformed
into a sequence F (c) ∈ {0, 1}n+k+1 (see Lemma 5) that
satisfies L(F (c),≤ k) ≤ T . Then we use a concatenated
code construction. Specifically, to protect a sequence c ∈
{0, 1}n+k+1 from k deletions, we split c into blocks ai, i ∈
[1, d(n + k + 1)/Be] of length B as in Eq. (5). Then the
function S defined in Eq. (6), which is a concatenation of the
mappings H (see Lemma 3) of ai, i ∈ [1, d(n+ k + 1)/Be],
can be used to corret k deletions in c (see Lemma 8). Finally,
a Reed-Solomon code is used to protect the sequence S. The
encoding function is as follows

Enc2(c) = (F (c), R
′

2(c), R
′′

2 (c)) (16)

where

R
′

2(c) = RS2bk/dc(S(F (c))),

R
′′

2 (c) = Repk+1(H(R
′

2(c))). (17)

The sequence S(·) is defined in (6), and RS2bk/dc is
the systematic Reed-Solomon code given in Lemma 1,
that corrects 2bk/dc erasure errors. The length of R

′

2(c)
is N1 = 2bk/dcmax{log(n+ k+ 1), 4k logB+ o(logB)} =
2bk/dcmax{log n, 4k log t}+ o(log n). The length of R

′′

2 (c)
is N2 = 4k(k + 1) logN1 + O(logN1) = o(log n). The
length of Enc2(c) is N = n + k + 1 + N1 + N2 =
n+ 2bk/dcmax{log n, 4k log t}+ o(log n).

Theorem 4. The set C2 = {Enc2(c) : c ∈ {0, 1}n} is a d-
head k-deletion correcting code for 2d ≤ k, if the adjacent
head distance t satisfies t ≥ max{(3k + dlog ne + 2)[k(k −
1)/2 + 1] + (7k − k3)/6, (4k + 1)(5k + dlog ne + 3)} for
i ∈ {1, . . . , d− 1}. The code C2 can be constructed, encoded,
and decoded in nt2k+1 time. The redundancy of C2 is N−n =
+2bk/dcmax{log n, 4k log t}+ o(log n).

Proof. The proof is essentially the same as the proof of
Theorem 3. For any D ∈ Dk(c, t), let d = D1,[1,N−k] be the
first row of D. The sequence d is a length N−k subsequence
of Enc2(c). Then it is possible to recover H(R

′

2(c)) from the
last N2−k bits of d, which is a length N2−k subsequence of
k+1-fold repetition of H(R

′

2(c)). Then, we can recover R
′

2(c)
from d[n+1,n+N1−k] by using H(R

′

2(c)).
It suffices to show how to use R′(c) to recover F (c).

According to Lemma 7, we can identify a set of J ≤ k dele-
tion isolated intervals {Ij}Jj=1, each with length not greater
than B, such that δ1 ⊆ (∪Jj=1Ij). All bits F (c)i with indices
i ∈ [1, n+ k+ 1]\(∪Jj=1Ij) can be recovered using (4). Note

12 IEEE TRANSACTIONS ON INFORMATION THEORY

that according to Lemma 6, the bits cIj with |δw∩Ij | ≤ d−1
errors can be recovered, when t ≥ max{(3k + dlog ne +
2)[k(k−1)/2+1]+(7k−k3)/6, (4k+1)(5k+dlog ne+3)}.
Moreover, each interval Ij with |δw ∩ Ij | ≥ d spans over
at most two blocks ai. Note that |δw ∩ Ij | is known by
Lemma 7. Therefore, at most 2bk/dc blocks, the indices of
which can be identified, contain at least d deletions. Hence
the sequence S(F (c)) can be recovered with at most 2bk/dc
symbol erasures, with known erasure indices. With the help
of the Reed-Solomon code redundancy RS2bk/dc(S(F (c)))
(see Lemma 1), the sequence S(F (c)) can be recovered. Then
from Lemma 8 and Lemma 5 the sequence F (c) and thus c
can be recovered. The computation complexity of Enc2(c)
has the same order as that of Enc1(c). It takes O(nt2k+1)
time to encode and decode Enc2(c).

Now we present a lower bound on the redundancy for
small head distances t = no(1), which proves the last part
of Theorem 1.

Theorem 5. Let C be a d-head k-deletion code with length n.
If the distance t satisfies t = no(1) for i ∈ [1, d− 1], then we
have that |C| ≤ 2bk/2dc logn+o(logn).

Proof. Sample the sequence c with period 2(d− 1)t,

c′ = (c1+(d−1)t, c1+3(d−1)t, . . . , c1+(2j+1)(d−1)t, . . . ,

c1+(2b(n−1−(d−1)t)/2(d−1)tc−1)(d−1)t)

We show that correcting k deletions in c is at least as hard
as correcting bk/dc erasures in c′. It suffices to show that d
deletions in heads i ∈ [1, d] can erase the information of any
bit in c′. For j ∈ [1, b(n − 1 − (d − 1)t)/2(d − 1)tc], let d
deletions occur at positions

{1 + (2j − 1)(d− 1)t− wt : w ∈ [0, d− 1]},

at head 1. Then the corresponding d deletion in head m occur
with indices

{1 + (2j − 1)(d− 1)t− wt+ (m− 1)t : w ∈ [0, d− 1]}

for m ∈ [1, d]. It follows that the bit c1+(2j−1)(d−1)t is deleted
in all heads. Suppose a genie tells the indices and values
of all the d deleted bits in each head except the value of
the bit c1+(2j−1)(d−1)t. Then this reduces to a erasure of the
bit c1+(2j−1)(d−1)t in c′. Note that in this way, k deletions in c
can cause bk/dc erasures in c′. From the Hamming bound, the
size |C| is upper bounded by

|C| ≤2n/(

bk/2dc∑
i=1

(
b(n− 1− (d− 1)t)/2(d− 1)tc

i

)
)

=2n−bk/2dc(logn−log(2(d−1)t))+o(logn)

=2n−bk/2dc logn+o(logn).

According to Theorem 5, the redundancy of a d-head k-
deletion code is lower bounded by bk/2dc log n+ o(log n).

VI. CORRECTING k DELETIONS AND INSERTIONS

In this section we show how to correct a combination
of up to k deletions and insertions in the d-head racetrack
memory. In this scenario, more challenges arise since there
may not be ”shifts” between different reads, as we observed in
Lemma 9, after a combination of deletions and insertions. This
makes detection and correction of errors more complicated.
Moreover, Lemma 6 does not apply.

The encoding and decoding algorithms for this task can be
regarded as a generalization of the algorithms for correcting k
deletions. Similar to Section III and Section V, we notice that
the error indices (δi,γi), i ∈ [1, d] are contained in a set of
disjoint edit isolated intervals (the definition of edit isolated
intervals will be given later), each with bounded length. We
can identify some of the intervals (see Algorithm 4) that
contain edit isolated intervals. However, different from the
cases in Section III and Section V, some of the edit isolated
intervals cannot be detected and identified from the reads.
Fortunately, the intervals that cannot be detected contain at
least 2d errors in each read. In addition, the ”shift” in bits
outside the edit isolated intervals, caused by the errors in
those edit isolated intervals, can be determined in a similar
manner (see algorithm 5) to Algorithm 3. Therefore, the bits
outside the edit isolated intervals can be recovered (see Al-
gorithm 6). For identifiable edit isolated intervals, we provide
a insertion/deletion counterpart (see Algorithm 7) of Lemma
6 (correcting deletion errors). Specifically, we will show how
to correct less than d insertions/deletions in an identifiable
edit isolated interval, which is more complicated than correct
deletions only since there might be no bit shifts among
reads. Then, we are left to correct the remaining identifiable
bk/dc intervals that contain at least d errors and undetactable
intervals that contain at least 2d errors. For this part, we follow
similar techniques in Section III and Section V and use Reed-
Solomon codes to protect a sequence of deletion/insertion
correcting mappings for all blocks, thereby achieving the
2bk/dcmax{log n, 4k log t} + o(log n) redundancy. In the
following, we provide the definition of edit isolated intervals.

Definition 2. Let δi = {δi,1, . . . , δi,r} and γi =
{γi,1, . . . , γi,s} be the sets of deletion and insertion indices,
respectively, in the ith head of a d-head racetrack memory,
i.e. δi+1 = δi + t and γi+1 = γi + t, for i ∈ [1, d − 1]. An
interval I is edit isolated if

δi+1 ∩ I =t+ δi ∩ I, and

γi+1 ∩ I =t+ γi ∩ I.

for i ∈ [1, d− 1].

We begin with the the algorithm for identifying a set of
disjoint intervals [b1j , b2j], j ∈ [1, J], given the read matrix
E ∈ Ek(c, t), such that for each j ∈ [1, J], there is an interval
[p1j , p2j] satisfying:
(A) [p1j , p2j] ⊆ [b1j , b2j]
(B) Ew,i = Ew′,i for any w,w′ ∈ [1, d] and i ∈ ([b1j , p1j −

1] ∪ [p2j + 1, b2j])
(C) E[1,d],[p1j ,p2j] ∈ Ek′(cIj) for some edit isolated interval
Ij and k′ ≥ 1.

SIMA AND BRUCK: CORRECTING MULTIPLE DELETIONS AND INSERTIONS IN RACETRACK MEMORY 13

(D)

|[b1j , b2j]| ≤ (2kdt+ 2t+ 1)(k + 1) + kdt+ 2k , Bo
(18)

for j ∈ [1, J].
(E) Ew,i = Ew′,i for any w,w′ ∈ [1, d] and i ∈ [1, n +

1]\(∪Jj=1[b1j , b2j]).

Algorithm 4: Finding intervals [b1j , b2j], j ∈ [1, J]

Input: The read matrix E ∈ Ek(c, t)
Output: Intervals [b1j , b2j], j ∈ [1, J] satisfying

properties (A), (B), (C), and (D)
Initialization: Set all integers m ∈ [1, n′] unmarked,

where n′ is the number of columns in E. Let i = 1.
Find the largest positive integer L such that the
sequences Ew,[i,i+L−1] = Ew′,[i,i+L−1] for
any w,w′ ∈ [1, d]. If such L exists and satisfies
L > kdt+ t, mark the integers m ∈ [1, L− (kdt+ t)]
and go to Step 1. Otherwise, go to Step 1;

Step 1: Find the largest positive integer L such that the
sequences Ew,[i,i+L−1] = Ew′,[i,i+L−1] for
any w,w′ ∈ [1, d]. Go to Step 2. If no such L is found,
set L = 0 and go to Step 2;

Step 2: If L ≥ 2(kdt+ t) + 1, mark the integers
m ∈ [i+ kdt+ t,min{i+ L− 1, n′} − (kdt+ t)].
Set i = i+ L+ 1 and go to Step 3. Else i = i+ 1 and
go to Step 3;

Step 3: If i ≤ n′, go to Step 1. Else go to Step 4;
Step 4: Output all unmarked intervals;

The algorithm is presented in Algorithm 4 and is similar to the
one in Section IV-A. However, different from the intervals I∗j ,
j ∈ [1, J] generated in Section IV-A, which satisfy properties
(P1) and (P2) in Section IV, here we do not necessarily have
an edit isolated interval I ′j satisfying E[1,d],[b1j ,b2j] ∈ Ek′(cI′j)
for every j ∈ [1, J]. Also, the error indices (γw ∪ δw),
w ∈ [1, d] may not be contained in the collection of intervals
∪Jj=1Ij .

In the following lemma, we show that the output intervals
[b1j , b2j], j ∈ [1, J], of Algorithm 4 satisfy the properties (A),
(B), (C), (D), and (E) above.

Lemma 10. For a read matrix E ∈ Ek(c) ∈ {0, 1}d×n′ ,
Let [b1j , b2j], j ∈ [1, J] be the output intervals in the above
procedure such that b11 < b12 < . . . < b1J . There exists a set
of intervals [p1j , p2j], j ∈ [1, J], satisfying (A), (B), (C), (D),
and (E) above.

Proof. Note that for each interval [b1j , b2j], we
have Ew,[b1j ,b1j+kdt+t−1] = Ew′,[b1j ,b1j+kdt+t−1]

and Ew,[b2j−kdt−t+1,b2j] = Ew′,[b2j−kdt−t+1,b2j] for
any w,w′ ∈ [1, d], except for j = 1, Ew,[b1j ,b1j+kdt+t−1]

may not be equal to Ew′,[b1j ,b1j+kdt+t−1], in which case,
we let that p11 = 1 and the following arguments hold.
Consider the set of intervals [b1j + (i − 1)t, b1j + it − 1]
for i ∈ [1, kd + 1]. Note that an error occurs in at most d
intervals, each in one of the d heads. Therefore, at most
kd intervals contain errors. Then, there exists an interval

[b1j + (i1 − 1)t, b1j + i1t− 1] for some i1 ∈ [1, kd+ 1] such
that [b1j + (i1 − 1)t, b1j + i1t − 1] ∩ (γw ∪ δw) = ∅
for w ∈ [1, d]. Similarly, there exists an interval
[b2j−i2t+1, b2j−(i2−1)t] for some i2 ∈ [1, kd+1], such that
[b2j−i2t+1, b2j−(i2−1)t]∩(γw∪δw) = ∅ for w ∈ [1, d]. This
implies that [b1j+i1t−1−k, b2j−i2t+1+k] is an edit isolated
interval. Let E[1,d],[p1j ,p2j] ∈ Ek′j (c[b1j+i1t−1−k,b2j−i2t+1+k]),
where k′j = |[b1j+i1t−1−k, b2j−i2t+1+k]∩δ1|+|[b1j+i1t−
1−k, b2j−i2t+1+k]∩γ1|, be the read matrix obtained from
c[b1j+i1t−1−k,b2j−i2t+1+k] after deletion errors with indices
δw ∩ [b1j + i1t− 1− k, b2j − i2t+ 1 + k] and insertion errors
with indices γw∩[b1j+i1t−1−k, b2j−i2t+1+k], w ∈ [1, d].
Then we have that p1j ∈ [b1j + t− 1− 2k, b1j + kdt+ t− 1]
and p2j ∈ [b2j − kdt − t + 1, b2j − t + 1 + 2k]. Therefore,
the intervals [p1j , p2j], j ∈ [1, J] satisfy (A), (B). To show
that [p1j , p2j], j ∈ [1, J] satisfy (C), we need to show k′j ≥ 1
for each j. Suppose on the contrary, k′j = 0. Then since
E[1,d],[p1j ,p2j] ∈ Ek′j (c[b1j+i1t−1−k,b2j−i2t+1+k]), we have
that Ew,[p1j ,p2j] = Ew′,[p1j ,p2j] for any w,w′ ∈ [1, d]. Then
we have Ew,[b1j ,b2j] = Ew′,[b1j ,b2j] for any w,w′ ∈ [1, d],
and b1j + kdt + t should have been marked, a contradiction
to the fact that [b1j , b2j] is an unmarked interval.

Next, we show that |[b1j , b2j]| < (2kdt+ 2t+ 1)(k + 1) +
kdt+2k. Note that an error that occurs with index i in the first
head also occurs with index i+(w−1)t in the wth head. These
indices are contained in an interval [i, i+ (d− 1)t] of length
less than dt. The indices of k errors in d heads are contained in
k intervals, each of length at most dt. If |[b1j , b2j]| ≥ (2kdt+
2t+1)(k+1)+kdt+2k, there exists a sub-interval [b′1j , b

′
2j] ⊆

[b1j+k, b2j−k] with length at least 2kdt+2t+1, that is disjoint
with the k intervals that contain the indices of all errors in all
heads. Therefore, [b′1j , b

′
2j] ∩ (δw ∪ γw) = ∅ for w ∈ [1, d].

Since the interval [b′1j , b
′
2j] has length more than t, the intervals

[1, b′1j − 1] and [b′2j + 1, n + k + 1] are edit isolated, where
n+ k+ 1 is the length of c. Moreover, Ew,i = Ew′,i for any
w,w′ ∈ [1, d] and i ∈ [b′1j −|δ1∩ [1, b′1j −1]|+ |γ1∩ [1, b′1j −
1]|, b′2j − |δ1 ∩ [1, b′1j − 1]|+ |γ1 ∩ [1, b′1j − 1]|]. This implies
that i = b′1j − |δ1 ∩ [1, b′1j − 1]|+ |γ1 ∩ [1, b′1j − 1] + kdt+ t
should be marked, contradicting to the fact that [b′1j , b

′
2j] is

unmarked, j ∈ [1, J]. Therefore, we proved (D). Finally, for
marked indices i, we have that Ew,i = Ew′,i for any w,w′ ∈
[1, d]. Theorefore, we have (E).

In the remaining of this section, we first show how to
determine the shifts caused by errors in the edit isolated
intervals that can be detected. The algorithm for determining
shifts is presented in Algorithm 5. This provides a way to
correct most of the bits in c, the algorithm for which is
given in Algorithm 6. Then, we show how to correct k < d
deletions and insertions in total, and show that when k ≥ d
and the the errors are not corrected, there is a constrait on
the number of errors that occur. The algorithm for correcting
k < d deletions and insertions is summarized in Algorithm
7. Finally, we present our encoding and decoding algorithms
for the general cases when k ≥ d. The code is the same as
the construction in Section V, but with a different decoding
algorithm. Before dealing with the k < d case, we present a
proposition that is repeatedly used in this section.

14 IEEE TRANSACTIONS ON INFORMATION THEORY

Proposition 1. Let E ∈ Ek(c) be a read matrix for some
sequence c satisfying L(c,≤ k) ≤ T . For any integers i ∈
[1, n] and w,w′ ∈ [1, d] such that no error occurs in interval
[i− T − 2k, i] in the wth and w′th head, i.e.,

(δw ∪ γw) ∩ [i− T − 2k, i] = ∅, and

(δw′ ∪ γw′) ∩ [i− T − 2k, i] = ∅, (19)

If

Ew,[i−T−2k,i−x] = Ew′,[i−T−2k+x,i] (20)

for some integer x ∈ [0, k], then

Γ(w, i)+x

=|γw′ ∩ [1, i− T − 2k − 1]| − |δw′ ∩ [1, i− T − 2k − 1]|
(21)

Proof. Suppose on the contrary,

|γw ∩ [1, i− T − 2k − 1]| − |δw ∩ [1, i− T − 2k − 1]|+x′

=|γw′ ∩ [1, i− T − 2k − 1]| − |δw′ ∩ [1, i− T − 2k − 1]|
(22)

for some x′ 6= x. Denote

Γ(w, i) , |γw ∩ [1, i−T −2k−1]|− |δw ∩ [1, i−T −2k−1]|

If x′ > x, then we have that

c[i−T−k+x′−x,i−k]

(a)
=Ew,[i−T−k+x′−x+Γ(w,i),i−k+Γ(w,i)]

(b)
=Ew′,[i−T−k+x′+Γ(w,i),i−k+Γ(w,i)+x]

(c)
=Ew′,[i−T−k+Γ(w′,i),i−k+Γ(w′,i)+x−x′]
(d)
= c[i−T−k,i−k+x−x′],

where (a) and (d) follows from (19) and the fact that |γw|+
|δw| ≤ k for w ∈ [1, d], (b) follows from (20), and (c) follows
from (22).

If x′ < x, we have that

c[i−T−k,i−k−x+x′]

=Ew,[i−T−k+Γ(w,i),i−k−x+x′+Γ(w,i)]

=Ew′,[i−T−k+Γ(w,i)+x,i−k+x′+Γ(w,i)]

=Ew′,[i−T−k+Γ(w′,i)+x−x′,i−k+Γ(w′,i)]

=c[i−T−k+x−x′,i−k],

In both cases, we have that L(c, |x−x′|) ≥ T+1, contradicting
to the fact that L(c,≤ k) ≤ T . Hence, x′ = x and the proof
is done.

A. Determine Bits Outside Edit Isolated Intervals

The following lemma shows that the bit shifts caused by
errors in intervals Ij , j ∈ [1, J] can be determined.

Lemma 11. Let E ∈ Ek(c) be a read matrix for some
sequence c satisfying L(c,≤ k) ≤ T . Let the head dis-
tance t satisfy t > (4K + 1)(T + 4k + 1). If there is
an interval [b1, b2], an interval [p1, p2] ⊆ [b1, b2], and an
edit isolated interval I satisfying E[1,d],[p1,p2] ∈ Ek′(cI)

for some 0 < k′ ≤ d − 1, and Ew,j = Ew′,j for any
w,w′ ∈ [1, d] and j ∈ ([b1, p1 − 1] ∪ [p2 + 1, b2]), then the
number of bit shifts caused by errors in interval I, which
is |γw ∩ I| − |δw ∩ I|, can be decided from E[1,d],[b1,b2],
for w ∈ [1, d]. Moreover, if Ew,[b1,b2] = Ew′,[b1,b2] for any
w,w′ ∈ [1, d], then |γw ∩ I| = |δw ∩ I| for any w ∈ [1, d].

Proof. Similar to what we did in Section IV-B. consider a set
of intervals

Bi,m = [b1 + (i− 1)t+ (m− 1)(T + 4k + 1),

b1 + (i− 1)t+m(T + 4k + 1)− 1],

for m ∈ [1, 4k + 1] and i ∈ [0, db2 − b1 + 1

t
e+ 1]

satisfying b1 + (i− 1)t+m(T + 4k + 1)− 1 ≤ b2.

Note that the intervals Bi,m are disjoint when t > (4k+1)(T+
4k + 1). For notation convenience, let

qi,m , b1 + (i− 1)t+ (m− 1)(T + 4k + 1) (23)

for m ∈ [1, 4k + 1] and i ∈ [0, d b2−b1+1
t e + 1] satisfying

b1 + (i− 1)t+m(T + 4k + 1)− 1 ≤ b2. Let

Um = ∪
i:qi,m−1≤b2,i∈[1,d b2−b1+1

t e+1]
Bi,m,

for m ∈ [1, 4k+1]. Since there are at most 2k errors in the first
two heads, there are at least (2k+1) choices of m ∈ [1, 4k+1],
m1, . . . ,m2k+1, such that Um`

∩ (δ1 ∪ γ1 ∪ δ2 ∪ δ2) ∩ I = ∅
for ` ∈ [1, 2k+ 1]. For each m ∈ [1, 4k+ 1] and integer i ≥ 1
such that qi,m − 1 ≤ b2, find the unique integer xm,i ∈ [0, k]
such that

E1,[qi,m+1+k,qi,m+2−k−1−xm,i]

=E2,[qi,m+1+k+xm,i,qi,m+2−k−1] (24)

or xm,i ∈ [−k,−1] such that

E1,[qi,m+1+k−xm,i,qi,m+2−k−1]

=E2,[qi,m+1+k,qi,m+2−k−1+x`,i] (25)

If no such xm,i or more than one exist, let xm,i = k + 1.
Denote

Γ′(w, i,ml) , |γw ∩ [b1, qi,m`
− 1]| − |δw ∩ [b1, qi,m`

− 1]|

. Since [qi,m`
, qi,m`+1 − 1]∩ (δ1 ∪ γ1 ∪ δ2 ∪ δ2)∩ I = ∅, we

have that

E1,[qi,m`
+Γ′(1,i,ml),qi,m`+1−1+Γ′(1,i,ml)]

=c[qi,m`
,qi,m`+1−1]

=E2,[qi,m`
+Γ′(2,i,ml),qi,m`+1−1+Γ′(2,i,ml)]

which implies that the integer xm`,i ∈ [−k, k] satisfying (24)
and (25) can be found for ` ∈ [1, 2k + 1]. According to
Proposition 1, such xm`,i is unique. In the following, we show
that

|γw ∩ I| − |δw ∩ I| =
∑

i:qi,m−1≤b2,i∈[1,
b2−b1+1

t +1]

xm`,i

(26)

SIMA AND BRUCK: CORRECTING MULTIPLE DELETIONS AND INSERTIONS IN RACETRACK MEMORY 15

for ` ∈ [1, 2k + 1].
For any fixed ` ∈ [1, 2k + 1], let i∗ ∈ [0, d b2−b1+1

t e + 1]
be the largest integer such that (γ1 ∪ δ1) ∩ I ∩ [1, qi∗,m+1 +
k − 1] = ∅. Note that xm`,i = 0 for i ∈ [1, i∗], because I is
edit isolated and (γw ∪ δw) ∩ I ∩ [1, qi∗,m+1 + k − 1] = ∅
for w ∈ [1, d]. Hence, we have |γw ∩ I ∩ [1, qi,m+1 − 1]| −
|δw ∩ I ∩ [1, qi,m+1 − 1| = 0 =

∑i∗

i=1 xm`,i for w ∈ {1, 2}.
According to Proposition 1 and definition of xm,i, we have
that

xm`,i

=|γ2 ∩ [1, qi,m`+1 + k − 1]| − |δ2 ∩ [1, qi,m`+1 + k − 1]|
− |γ1 ∩ [1, qi,m`+1 + k − 1]|+ |δ1 ∩ [1, qi,m`+1 + k − 1]|

(a)
= |δ1 ∩ [qi−1,m`+1 + k, qi,m`+1 + k − 1]|
− |γ1 ∩ [qi−1,m`+1 + k, qi,m`+1 + k − 1]|

for i ≥ i∗+ 1, where (a) follows since |γ2∩ [1, qi,m`+1 +k−
1]| = |γ1 ∩ [1, qi−1,m`+1 + k− 1]| and |δ2 ∩ [1, qi,m`+1 + k−
1]| = |δ1 ∩ [1, qi−1,m`+1 + k − 1]|. Moreover xm`,i = 0 for
qi,m`

≥ p2 + 1. Therefore,∑
i:qi,m`

−1≤b2,i∈[1,d b2−b1+1
t e+1]

xm`,i

=
∑

i:qi,m`+1−1≤p2,i≥i∗+1

(|δ1 ∩ [qi−1,m`+1+k, qi,m`+1+k−1]|

− |γ1 ∩ [qi−1,m`+1 + k, qi,m`+1 + k − 1]|)
=|δ1 ∩ I| − |γ1 ∩ I|,

where the last equality holds since (γ1 ∪ δ1) ∩ I ∩
[1, qi∗,m+1 + k − 1] = ∅ and I is edit isolated. Therefore,
we have (26) for ` ∈ [1, 2k + 1]. Find the majority of∑
i:qi,m−1≤b2,i∈[1,

b2−b1+1
t +1]

xm,i for m ∈ [1, 4k + 1], we
obtain the value |δw ∩ I| − |γw ∩ I| for w ∈ [1, d].

Finally, since xm,i = 0 for each pair of (m, i) when
Ew,[b1,b2] = Ew′,[b1,b2] for any w,w′ ∈ [1, d], we have
|γw ∩ I| = |δw ∩ I| for any w ∈ [1, d].

We summarize the algorithm described in the proof of
Lemma 11 in Algorithm 5, which takes an output interval
[b1j , b2j] in Algorithm 4 for any j ∈ [1, J] and the read matrix
E as input, and find the bit shifts |γw ∩ Ij | − |δw ∩ Ij |, for
w ∈ [1, d] and j ∈ [1, J], where Ij is the edit isolated interval
associated with [b1j , b2j], j ∈ [1, J].

The next lemma shows that we can recover most of the
bits in c. Before stating the lemma, we define the notion of
a minimum edit isolated interval. An interval I is called a
minimum edit isolated interval if there is no strict sub-interval
I ′ (I of I that is edit isolated.

We note that the error indices in all heads are contained in
a disjoint set of minimum isolated intervals.

Lemma 12. Let {[b1j , b2j]}Jj=1 be the set of output intervals in
Algorithm 4 and let {Ij}Jj=1 be the corresponding edit isolated
intervals. Let E ∈ Ek(c) be a read matrix for some sequence c
satisfying L(c,≤ k) ≤ T . For an index i not in any minimum
edit isolated interval that is disjoint with Ij , j ∈ [1, J], if the
column index of the bit E1,i−|[1:i−1]∩δ1|+|[1:i−1]∩γ1| coming
from ci in the first read is not contained in one of the output

Algorithm 5: Finding intervals [b1j , b2j], j ∈ [1, J]

Input: The read matrix E ∈ Ek(c, t) and an output
interval [b1j , b2j] of Algorithm 4 for any j ∈ [1, J]

Output: |γw ∩ Ij | − |δw ∩ Ij |, for w ∈ [1, d] and
j ∈ [1, J]

Step 1: Compute the number qi,m by using (23) and
replacing b1 by b1j , for m ∈ [1, 4k + 1] and
i ∈ [0, d b2j−b1j+1

t e+ 1] satisfying
b1j + (i− 1)t+m(T + 4k+ 1)− 1 ≤ b2j . Go to Step 2;

Step 2: For each m ∈ [1, 4k + 1] and i ≥ 1 such that
qi,m − 1 ≤ b2j find the unique integer xm,i ∈ [0, k]
satisfying (24) or xm,i ∈ [−k,−1] satisfying (25). If no
such xm,i or more than one exist, let xm,i = k + 1. Go
to Step 3;

Step 3: Output the majority of∑
i:qi,m−1≤b2j ,i∈[1,

b2j−b1j+1

t +1]
xm,i for m ∈ [1, 4k + 1];

intervals [b1j , b2j], the bit ci can be correctly recovered given
E.

Proof. Assume that b11 < b12 < . . . < b1J . For each output
interval [b1j , b2j], j ∈ [1, J], let qj ∈ [b1j , b2j] be the largest
integer such that there exist w,w′ ∈ [1, d] satisfying Ew,qj 6=
Ew′,qj . We show that qj ∈ [b1j + k + 1, b2j − k − 1] for j ∈
[1, J], unless when b11 = 1 or b2J = n′ ∈ [n+ 1, n+ 2k+ 1],
we can assume that b11 = −k−1 and b2J = n+2k+2, which
does not affect the result. Note that for any index i such that
there exist w,w′ ∈ [1, d] satisfying Ew,i 6= Ew′,i, the indices
[i + 1, i + kdt + t] are not marked and contained in some
output interval. We have that qj ≤ b2j − k − 1. Similarly,
qj ≥ b1j + k + 1 because the intervals [qj − kdt − t, qj],
j ∈ [1, J] is not marked.

According to Lemma 10, each output interval [b1j , b2j] is
associated with an edit isolated interval Ij , j ∈ [1, J]. Note
that for any minimum edit isolated interval [i1, i2] that is
disjoint with Ij for j ∈ [1, J], we have that

Ew,i = Ew′,i

for any w,w′ ∈ [1, d] and i ∈ [i1, i2]. By Lemma 11, we
have that |[i1, i2] ∩ δ1| = |[i1, i2] ∩ γ1|, i.e., there is no bit
shift caused by errors in interval [i1, i2]. In addition, the shift
caused by errors in interval Ij , j ∈ [1, J], which is |Ij∩γ1|−
|Ij ∩ δ1| = sj , can be determined. This implies that

|[1 : i′ − 1] ∩ γ1| − |[1 : i′ − 1] ∩ δ1|

=
∑

j:b2j<i′+|[1:i′−1]∩γ1|−|[1:i′−1]∩δ1|

sj

=
∑

j:qj<i′

sj

(a)
=

∑
j:qj<i′+|[1:i′−1]∩γ1|−|[1:i′−1]∩δ1|

sj (27)

for any i′ satisfying: (1) i′−|[1 : i′−1]∩δ1|+ |[1 : i′−1]∩γ1|
not in any output interval [b1j , b2j], j ∈ [1, J]. (2) i′ is not in
any minimum edit isolated interval that is disjoint with Ij ,
j ∈ [1, J] . The equality (a) holds because qj ∈ [b1j + k +

16 IEEE TRANSACTIONS ON INFORMATION THEORY

1, b2j −k− 1], and i′ > qj only when b2j < i′+ |[1 : i′− 1]∩
γ1| + |[1 : i′ − 1] ∩ δ1| . For the same reason, i′ < qj only
when b1j > i′ + |[1 : i′ − 1] ∩ γ1|+ |[1 : i′ − 1] ∩ δ1|.

For any E1,i such that i is not included in any output
interval [b1j , b2j], j ∈ [1, J], let

c′i−
∑

j:qj<i sj
= E1,i. (28)

be an estimate of the bit ci−∑j:qj<i sj
. Then, for any index i′

such that i′ − |[1 : i′ − 1] ∩ δ1| + |[1 : i′ − 1] ∩ γ1| is not
included in any output interval and i′ is not in any minimum
edit isolated interval that is disjoint with Ij , j ∈ [1, J], we
have that

ci′

=E1,i′−|[1:i′−1]∩δ1|+|[1:i′−1]∩γ1|

=c′i′−|[1:i′−1]∩δ1|+|[1:i′−1]∩γ1|−
∑

j:qj<i′−|[1:i′−1]∩δ1|+|[1:i′−1]∩γ1|
sj

=c′i′ ,

where the last equality follows from (27). Therefore, the proof
is done.

The algorithm for determining the bit ci for i satisfying:
S1 i not in any minimum edit isolated interval that is

disjoint with Ij , j ∈ [1, J].
S2 ci not falling withing any interval [b1,j , b2j], j ∈ [1, J]

in the first read after errors.
is given in Algorithm 6.

Algorithm 6: Recovering most of the bits ci
Input: The read matrix E ∈ Ek(c, t) and the output

intervals [b1j , b2j], j ∈ [1, J], of Algorithm 4
Output: c′ such that c′i = ci for i satisfying S1 and S2
Step 1: Let qj ∈ [b1j , b2j] be the largest integer such that
there exist w,w′ ∈ [1, d] satisfying Ew,qj 6= Ew′,qj , for
j ∈ [1, J]. Go to Step 2;

Step 2: For each j ∈ [1, J], compute
sj = |Ij ∩ γ1| − |Ij ∩ δ1| using Algorithm 5. Go to
Step 3;

Step 3: For any i not included in any output interval
[b1j , b2j], j ∈ [1, J], let c′i−∑j:qj<i sj

= E1,i (see (28)).

Output the sequence c′;

B. Correcting k < d Deletions and Insertions

The cases when k < d are addressed in the following
lemma, which proves the first part of Theorem 2, where k < d.

Lemma 13. Let E ∈ Ek(c) be a read matrix for some
sequence c satisfying L(c,≤ k) ≤ T . Let the distance t

satisfy t > (k
2

4 + 3k)(T + 3k + 1) + T + 5k + 1. If there
is an interval [b1, b2], an interval [p1, p2] ⊆ [b1, b2], and an
edit isolated interval I satisfying E[1,d],[p1,p2] ∈ Ek′(cI) for
some k′ ≤ d − 1, and Ew,j = Ew′,j for any w,w′ ∈ [1, d]
and j ∈ ([b1, p1 − 1] ∪ [p2 + 1, b2]), then we can obtain a
sequence e ∈ {0, 1}p1−b1+b2−p2+|I| such that e[1,p1−b1] =

Ew,[b1,p1−1] for w ∈ [1, d], e[p1−b1+1,p1−b1+|I|] = cI , and
e[p1−b1+|I|+1,p1−b1+|I|+b2−p2] = Ew,[p2+1,b2] for w ∈ [1, d].

Proof. Let i∗ be the minimum index such that i∗ ≥ b1 and
there exist different w,w′ ∈ [1, d] satisfying Ew,i∗ 6= Ew′,i∗ .
Let Ew∗,i∗ be the minority bit among {Ew,i∗}dw=1, i.e., there
are at most bd2c bits among {Ew,i∗}dw=1 being equal toEw∗,i∗ .
We will first show that there are edit errors occur near index
i∗ in the w∗th head, unless when the numbers of 1-bits and 0-
bits among {Ew,i∗}dw=1 are equal, edit errors occur near index
i∗ in the first head. To this end, we begin with the following
proposition.

Proposition 2. Let E ∈ Ek(c) be a read matrix for some
sequence c satisfying L(c,≤ k) ≤ T . Let i∗ > 0 be an integer
such that Ew,[i∗−T−2k−1,i∗−1] = Ew′,[i∗−T−2k−1,i∗−1] for
any w′, w ∈ [1, d]. For any w1, w2 ∈ [1, d] such that no error
occurs in interval [i∗ − T − 2k − 1, i∗ + k − 1] in the w1th
and w2th head, i.e.,

(δw1
∪ γw1

) ∩ [i∗ − T − 2k − 1, i∗ + k − 1] = ∅, and

(δw2
∪ γw2

) ∩ [i∗ − T − 2k − 1, i∗ + k − 1] = ∅, (29)

the bits Ew1,i∗ and Ew2,i∗ are equal.

Proof. According to Proposition 1, we have that

|γw1∩[1, i∗−T−2k−2]|−|δw1∩[1, i∗−T−2k−2]|
=|γw2∩[1, i∗−T−2k−2]|−|δw2∩[1, i∗−T−2k−2]|. (30)

Then,

Ew1,i∗
(a)
=ci∗−|γw1

∩[1,i∗−T−2k−2]|+|δw1
∩[1,i∗−T−2k−2]|

(b)
=ci∗−|γw2∩[1,i∗−T−2k−2]|+|δw2∩[1,i∗−T−2k−2]|
(c)
=Ew2,i∗

where (a) and (c) follow from (29) and the fact that |γw ∩
[1, i∗−T −2k−2]|− |δw ∩ [1, i∗−T −2k−2]| ≤ k. Equality
(b) follows from (30).

From Proposition 2, we can easily conclude that there is at
least one error in interval [i∗− T − 2k− 1, i∗+ k− 1] in one
of the heads, i.e., (δw∪γw)∩ [i∗−T −2k−1, i∗+k−1] 6= ∅
for some w ∈ [1, d]. Otherwise the bits Ew,i∗ are equal for
all w ∈ [1, d], contradicting to the definition of i∗.

Next, we need the following proposition.

Proposition 3. Let E ∈ Ek(c) be a read matrix for some
sequence c satisfying L(c,≤ k) ≤ T . Let i∗ > 0 be an integer
such that Ew,[1,i∗−1] = Ew′,[1,i∗−1] for any w′, w ∈ [1, d].If
T ∗ ≥ T+2k+1 and t > (k+1)T ∗, then the number of heads
where at least one error occurs in interval [i∗−T ∗, i∗+k−1]
is at most bk+1

2 c, i.e.,

|{w : (δw ∪ γw) ∩ [i∗ − T ∗, i∗ + k − 1] 6= ∅}| ≤ bk + 1

2
c

Moreover, when |{w : (δw ∪ γw) ∩ [i∗ − T ∗, i∗ + k − 1] 6=
∅}| = k+1

2 , at least one error occurs in [i∗ − T ∗, i∗] in the
first head, i.e., (δ1 ∪ γ1) ∩ [i∗ − T ∗, i∗] 6= ∅.

Proof. Let {w : w ∈ [2, d], (δw ∪γw)∩ [i∗−T ∗, i∗+k−1] 6=
∅} = {w1, w2, . . . , wM} be the set of heads (not including

SIMA AND BRUCK: CORRECTING MULTIPLE DELETIONS AND INSERTIONS IN RACETRACK MEMORY 17

the first head) that contains at least one error in interval [i∗−
T ∗, i∗+k− 1]. Let w1 > w2 > . . . > wM . We will show that
there exist a set of integers i1, i2, . . . , iM ∈ [0, k] such that
i1 ≥ i2 ≥ . . . ≥ iM and

|(δ1 ∩ [i∗ − T ∗ − (w` − 1)t− (T ∗ + k)i`,

i∗ − T ∗ − (w` − 2)t− (T ∗ + k)i` − 1]|
+ |γ1 ∩ [i∗ − T ∗ − (w` − 1)t− (T ∗ + k)i`,

i∗ − T ∗ − (w` − 2)t− (T ∗ + k)i` − 1]|
≥2 (31)

for ` ∈ [1,M]. Note that the intervals [i∗ − T ∗ − (w` − 1)t−
(T ∗+k)i`, i

∗−T ∗−(w`−2)t−(T ∗+k)i`−1] are disjoint for
different ` ∈ [1,M] and are within the interval [−T ∗− (T ∗+
k)(k+1), i∗−T ∗−1], since t > (k+1)(T ∗+1) for j ∈ [1, d]
and i` ≤ k for ` ∈ [1,M]. Then, the number of errors in the
first head is at least 2|{w : (δw ∪γw)∩ [i∗−T ∗, i∗+k−1] 6=
∅, w ∈ [2, d]}|+1((δ1∪γ1)∩ [i∗−T ∗, i∗+k−1] 6= ∅), where
1(A) is the indicator that equals 1 when A is true and equals
0 otherwise. Hence, we have that

2|{w : (δw ∪ γw) ∩ [i∗ − T ∗, i∗ + k − 1] 6= ∅, w ∈ [2, d]}|
+ 1((δ1 ∪ γ1) ∩ [i∗ − T ∗, i∗ + k − 1] 6= ∅)

≤ k

Then, it can be easily verified that the proposition follows.
Now we find the set of non-negative integers i1 ≥ i2 ≥

. . . ≥ iM satisfying (31). Let i0 = k. Starting from ` = 1
to ` = M , find the largest non-negative integer i` such that
i` ≤ i`−1 and no errors occur in interval [i∗ − T ∗ − (T ∗ +
k)(i`+1), i∗−T ∗−(T ∗+k)i`−1] in the w`th or the (w`−1)th
heads, i.e.,

(γw`
∪ δw`

∪ γw`−1 ∪ δw`−1)

∩ [i∗ − T ∗ − (T ∗ + k)(i` + 1), i∗ − T ∗ − (T ∗ + k)i` − 1]

=∅. (32)

We show that such an ` ∈ [1,M] can be found as long as
t > (T ∗+k)(k+2). Note that in the above procedure, for each
integer i ∈ [i` + 1, k], there is at least an edit error occurring
in interval [i∗−T ∗−(T ∗+k)(i+1), i∗−T ∗−(T ∗+k)i−1] in
one of the heads w, which corresponds to an error that occurs
in interval [i∗ − T ∗ − (T ∗ + k)(i+ 1)− (w − 1)t, i∗ − T ∗ −
(T ∗ + k)i − 1 − (w − 1)t] in the first head. In addition, the
intervals [i∗−T ∗−(T ∗+k)(i+1)−(w−1)t, i∗−T ∗−(T ∗+
k)i − 1 − (w − 1)t] are disjoint for different pairs (i, w), as
long as t ≥ (T ∗ + k)(k+ 2). Since there are at most k errors
in the first head and there are k + 1 choices of i`, such an i`
satisfying (32) can be found.

Since Ew`,i = Ew`−1,i for i ∈ [i∗ − T ∗ − (T ∗ + k)(i` +
1), i∗ − T ∗ − (T ∗ + k)i` − 1], by Proposition 1 we have that

|γw`−1 ∩ [1, i∗ − T ∗ − (T ∗ + k)(i` + 1)− 1]|
− |δw`−1 ∩ [1, i∗ − T ∗ − (T ∗ + k)(i` + 1)− 1]|

=|γw`
∩ [1, i∗ − T ∗ − (T ∗ + k)(i` + 1)− 1]|

− |δw`
∩ [1, i∗ − T ∗ − (T ∗ + k)(i` + 1)− 1]|. (33)

On the other hand, we have that

|γw`−1 ∩ [1, i∗ − T ∗ − (T ∗ + k)(i` + 1)− 1− t]|
− |δw`−1 ∩ [1, i∗ − T ∗ − (T ∗ + k)(i` + 1)− 1− t]|

=|γw`
∩ [1, i∗ − T ∗ − (T ∗ + k)(i` + 1)− 1]|

− |δw`
∩ [1, i∗ − T ∗ − (T ∗ + k)(i` + 1)− 1]|. (34)

Eq. (33) and Eq. (34) imply that

|γw`−1 ∩ [i∗ − T ∗ − (T ∗ + k)(i` + 1)− t,
i∗ − T ∗ − (T ∗ + k)(i` + 1)− 1]|

=|δw`−1 ∩ [i∗ − T ∗ − (T ∗ + k)(i` + 1)− t,
i∗ − T ∗ − (T ∗ + k)(i` + 1)− 1]| (35)

Since (γw`
∪ δw`

)∩ [i∗− T ∗, i∗+ k− 1] 6= ∅ by definition of
w`, we have that

(γw`−1 ∪ δw`−1) ∩ [i∗ − T ∗ − t, i∗ + k − 1− t]
⊆(γw`−1 ∪ δw`−1) ∩ [i∗ − T ∗ − (T ∗ + k)(i` + 1)− t,

i∗ − T ∗ − (T ∗ + k)(i` + 1)− 1]

6=∅

Together with(35), we have that

|γw`−1 ∩ [i∗ − T ∗ − (T ∗ + k)(i` + 1)− t,
i∗ − T ∗ − (T ∗ + k)(i` + 1)− 1]|

+|δw`−1 ∩ [i∗ − T ∗ − (T ∗ + k)(i` + 1)− t,
i∗ − T ∗ − (T ∗ + k)(i` + 1)− 1]|

≥2,

which implies (31) because γw`−1 = γ1 + (w` − 2)t and
δw`−1 = δ1 + (w` − 2)t. Hence, the proof is done.

Recall that w∗ ∈ [1, d] is a head index such that Ew∗,i∗ is a
minority bit among {Ew,i∗}dw=1, i.e., there are at most d2 bits
among {Ew,i∗}dw=1 that is equal to Ew∗,i∗ . By Proposition
2 and Proposition 3, we conclude that when k < d, we have
that (δw∗ ∪ γw∗) ∩ [i∗ − T − 2k − 1, i∗ + k − 1] 6= ∅, if
the number of bits among {Ew,i∗}dw=1 being equal to Ew∗,i∗
is is less than d/2. If k < d and the number of bits among
{Ew,i∗}dw=1 being equal to Ew∗,i∗ is is exactly d/2, we have
that (δ1 ∪ γ1) ∩ [i∗ − T − 2k − 1, i∗ + k − 1] 6= ∅.

Now we have found a w∗ with

(δw∗ ∪ γw∗) ∩ [i∗ − T − 2k − 1, i∗ + k − 1] 6= ∅. (36)

In the remaining part of the proof, we show how to use
knowledge of w∗ to correct at least one error for each head,
and reduce the d-head case to a (d − 1)-head case. Then,
the lemma follows by induction, since the case when d = 1
is obvious. Assume that w∗ ≤ d − 1. The procedure when
w∗ = d will be similar.

Note that (δw ∪ γw) ∩ [i∗ − T − 2k − 1 + (w −w∗)t, i∗ +
k− 1 + (w−w∗)t] 6= ∅ by (36). Consider the set of intervals

[i∗ + 2k + (`− 1)(T + 3k + 1) + (w − w∗)t,
i∗ + 2k − 1 + `(T + 3k + 1) + (w − w∗)t]

18 IEEE TRANSACTIONS ON INFORMATION THEORY

for ` ∈ [1, k
2

4 + 3k] and w ∈ [1, d]. For notation convenience,
denote

vw,` , i∗ + 2k + (`− 1)(T + 3k + 1) + (w − w∗)t (37)

for ` ∈ [1, k
2

4 + 3k] and w ∈ [1, d]. For each pair ` ∈ [1, k
2

4 +
3k] and w ∈ [1, d − 1], find a unique integer xw,` ∈ [0, k],
such that

Ew,[vw,`,vw,`+1−1−xw,`] = Ew+1,[vw,`+xw,`,vw,`+1−1] (38)

or xw,` ∈ [−k,−1] such that

Ew,[vw,`−xw,`,vw,`+1−1] = Ew+1,[vw,`,vw,`+xw,`+1−1] (39)

If no such integer or more than one exist, let xw,` = k + 1.
Given xw,`, ` ∈ [1, k

2

4 + 3k] and w ∈ [1, d], define a binary
vector z ∈ {0, 1} k2

4 +3k as follows:

z`=

1, if there exists a w ∈ [1, d− 1] such that
xw,` = k + 1,

1, if there exists a w ∈ [1, d− 1] such that
xw,` 6= xw,`−1 and xw,`, xw,`−1 ∈ [−k, k],

0, else.
(40)

for ` ∈ k2

4 + 3k. In (40), it is assumed that xw,0 = xw,1 for
w ∈ [1, d− 1].

Let y∗ = |(γw∗ ∪ δw∗ ∪ γw∗+1 ∪ δw∗+1) ∩ [vw∗,1 −
k, v

w∗, k
2

4 +3k
+ T + 4k]| be the number of errors that occur

in interval [vw∗,1 − k, v
w∗, k

2

4 +3k
+ T + 4k] in the w∗th or

(w∗+ 1)th head. Note that y∗ = |(γw ∪ δw ∪γw+1 ∪ δw+1)∩
[vw,1 − k, v

w, k
2

4 +3k
+ T + 4k]| for w ∈ [1, d]. Moreover,

Ew,[vw,1,v
w, k

2
4

+3k
+T+3k] can be obtained by a subsequence

of c[vw,1−k,v
w, k

2
4

+3k
+T+4k] after at most y∗ deletions and

insertions in interval [vw,1 − k, v
w, k

2

4 +3k
+ T + 4k] in the

wth head, w ∈ [1, d− 1].
We first show that y∗ ≤ k−1. Note that the |(γw∗ ∪δw∗)∩

[i∗ + k, n′]| errors that occur after index i∗ + k in the w∗th
head, occur after index i∗ + k+ t > v

w∗, k
2

4 +3k
+ T + 4k+ 1

in the (w∗ + 1)th head. Moreover, the errors that occur in
interval [i∗ − T − 2k − 1, i∗ + k − 1] in the w∗th head occur
after i∗ − T − 2k − 1 + t > v

w∗, k
2

4 +3k
+ T + 4k + 1 in the

(w∗+1)th head, since t > (k
2

4 +3k)(T+3k+1)+T+5k+1.
Recall that (δw∗ ∪ γw∗) ∩ [i∗ − T − 2k − 1, i∗ + k − 1] 6= ∅.
Hence, there are at most k − |(γw∗ ∪ δw∗) ∩ [i∗ + k, n′]| −
1 + |(γw∗ ∪ δw∗) ∩ [i∗ + k, n′]| = k − 1 errors that occur in
interval [i∗+k, v

w∗, k
2

4 +3k
+T +4k] in the w∗th or (w∗+1)th

head.
Next, we show that there are at most (2k − 2) 1 entries

in z. Note that a single error in interval [i∗ + k, v
w∗, k

2

4 +3k
+

T + 4k] in the w∗th or (w∗+ 1)th head affects the value of at
most a single entry xw,` and the entries xw,`+1, . . . , xw, k2

4 +3k

increase or decrease by 1 for w ∈ [1, d]. This generates at most
two 1 entries in z. Hence there are at most 2y∗ ≤ 2k − 2 1
entries in z.

Let y be the number of 1 runs in z. We show that there
exists a 0-run (zi+1, . . . , zi+k−y+2) of length k − y + 2, for
some i ∈ [0, k

2

4 + 2k + y], which indicates that

Ew,[vw,i+1,vw,i+k−y+3−xw,i+1−1]

=Ew+1,[vw,i+1+xw,i+1,vw,i+k−y+3−1] (41)

if xw,i+1 ∈ [0, k] or

Ew,[vw,i+1−xw,i+1,vw,i+k−y+3−1]

=Ew+1,[vw,i+1,vw,i+k−y+3+xw,i+1−1] (42)

if xw,i+1 ∈ [−k,−1], for every w ∈ [1, d− 1].
Suppose on the contrary, each 0 run has length no more

than k − y + 1. Note that there are at most y + 1 0 runs with
y 1 runs. Therefore, the length of z is upper bounded by

k2

4
+ 3k ≤(y + 1)(k − y + 1) + 2k − 2

=− y2 + ky + 3k − 1

≤k
2

4
+ 3k − 1,

a contradiction.
We have proved the existence of a 0 run

(zi+1, . . . , zi+k−y+2), which implies (41) and (42). We
now show that there are at most k − y + 1 errors occur in
interval [vw,i+1, vw,i+k−y+3 − 1] in the w and/or (w + 1)th
head, for w ∈ [1, d−1]. As mentioned above, a single error in
interval [i∗+k, v

w∗, k
2

4 +3k
+T +4k] in the w∗th or (w∗+1)th

head affects the value of at most a single entry xw,` and the
entries (xw,`+1, . . . , xw, k2

4 +3k
) increase or decrease by 1 for

w ∈ [1, d]. This generates at most a single 1 run in z. In
addition, errors in interval [vw,i+1, vw,i+k−y+3 − 1] in the w
and/or (w+1)th head generate at most two 1 runs that include
zi and zi+k−y+3. Therefore, there are at least y− 2 1 runs in
z that are generated by at least y − 2 errors in [i∗ + k, [i∗ +
k, v

w∗, k
2

4 +3k
+T + 4k]]\[vw,i+1, vw,i+k−y+3− 1]. Hence, the

number of errors in interval [vw,i+1, vw,i+k−y+3 − 1] in the
w and/or (w + 1)th head is at most y∗ − y + 2 ≤ k − y + 1.

Therefore, there exists an integer ` ∈ [i + 1, i + k −
y + 2] such that no errors occur in interval [vw,`, vw,`+1 −
1] in the w and/or (w + 1)th head, which implies
that Ew+1,[p1,vw,`−|δw+1∩I∩[1,vw,`−1]|+|γw+1∩I∩[1,vw,`−1]|+k]

is obtained from cI∩[1,vw,`+k], after deletion errors with
indices δw+1∩I∩[1, vw,`−1] and insertion errors with indices
γw+1 ∩ I ∩ [1, vw,` − 1]. Moreover,

Ew,[vw,`+k+1−|δw+1∩I∩[1,vw,`−1]|+|γw+1∩I∩[1,vw,`−1]|−xw,`,p2]

(a)
=Ew,[vw,`+k+1−|δw∩I∩[1,vw,`−1]|+|γw∩I∩[1,vw,`−1]|,p2],

where (a) follows from Proposition 1, can be obtained from
cI∩[vw,`+k+1,n+k+1], after deletion errors with indices δw ∩
I ∩ [vw,`, n + k + 1] and insertion errors with indices γw ∩
I ∩ [vw,`, n+ k + 1]. Therefore, by concatenating

Ew+1,[p1,vw,`−|δw+1∩I∩[1,vw,`−1]|+|γw+1∩I∩[1,vw,`−1]|+k]

and

Ew,[vw,`+k+1−|δw+1∩I∩[1,vw,`−1]|+|γw+1∩I∩[1,vw,`−1]|−xw,`,p2],

SIMA AND BRUCK: CORRECTING MULTIPLE DELETIONS AND INSERTIONS IN RACETRACK MEMORY 19

we have a sequence obtained from cI by deletion errors with
indices (δw+1∩I ∩ [1, vw,`−1])∪ (δw ∩I ∩ [vw,`, n+k+1])
and insertion errors with indices (γw+1 ∩ I ∩ [1, vw,` − 1]) ∪
(γw ∩ I ∩ [vw,`, n + k + 1]), w ∈ [1, d − 1] in cI . Note that
there are at most |δw ∩I|+ |γw ∩I|− 1 errors in total in the
concatenation, since

|δw+1 ∩ I ∩ [1, vw,` − 1]| = |δw ∩ I ∩ [1, vw,` − 1− t]|,

and

|γw+1 ∩ I ∩ [1, vw,` − 1]| = |γw ∩ I ∩ [1, vw,` − 1− t]|,

and the errors occur in [(δw ∪ γw) ∩ [vw,1 − T − 4k −
1, vw,1 − k − 1]|] 6= ∅ (see (36)) are not included in
the concatenation. Finally, since (zi+1, . . . , zi+k−y+2)
is a 0 run, we have that xw,i+1 = xw,i+2 = . . . =
xw,i+k−y+2 for w ∈ [1, d − 1]. Hence, concatenating
Ew+1,[p1,vw,i+1+k] and Ew,[vw,i+1+k+1−xw,i+1,p2]

results in the same sequence as concatenating
Ew+1,[p1,vw,`−|δw+1∩I∩[1,vw,`−1]|+|γw+1∩I∩[1,vw,`−1]|+k] and
Ew,[vw,`+k+1−|δw+1∩I∩[1,vw,`−1]|+|γw+1∩I∩[1,vw,`−1]|−xw,`,p2],
w ∈ [1, d − 1]. Note that p1, p2 and xw,` are
not known by the algorithm. We concatenate
Ew+1,[b1,vw,i+1+k] and Ew,[vw,i+1+k+1−xw,i+1,b2] for each
w ∈ [1, d − 1]. Let the d − 1 concatenated sequences
be represented by a read matrix E′ ∈ {0, 1}(d−1)×m′ .
Then from the above arguments, we have that
E′[1,d−1],[p1−b1+1,m′−(b2−p2)] ∈ Ek′′(cI) for some k′′ ≤ k′−1.
In addition, we have that E′w,[1,p1−b1] = Ew,[b1,p1−1] and
E′w,[m′−(b2−p2)+1,m′] = Ew,[p2+1,b2] for any w ∈ [1, d− 1].

For cases when w∗ = d, the proof is similar, where instead
of looking at intervals [i∗ + 2k+ (`− 1)(T + 3k+ 1) + (w−
w∗)t, i∗ + 2k− 1 + `(T + 3k+ 1) + (w−w∗)t] and defining
xw,`, w ∈ [1, d − 1], ` ∈ [1, k

2

4 + 3k] on these intervals, we
define xw,` on intervals [i∗− T − 3k− `(T + 3k+ 1) + (w−
w∗)t, i∗ − T − 3k − 1 − (` − 1)(T + 3k + 1) + (w − w∗)t]
for ` ∈ [1, k

2

4 + 3k] and w ∈ [1, d − 1]. Then we define z`
based on xw,` and find a 0 run (zi+1, . . . , zi+k−y+2) of length
k − y + 2 in z, where y is the number of 1 runs in z, and
concatenate

Ew+1,[p1,i∗−T−3k−(i+1)(T+3k+1)+(w−w∗)t+k]

and

Ew,[i∗−T−3k−(i+1)(T+3k+1)+(w−w∗)t+k+1−xw,i+1,p2]

for w ∈ [1, d− 1].
We have shown how to correct at least one error using d

reads. To correct all errors, we repeat the same procedure
iteratively. In each iteration, we get a read matrix with one
less read. The algorithm stops when we get a read matrix
where all rows are equal. Let d∗ be the number of rows of the
read matrix after the algorithm stops. Let e be the first row of
this matrix.

We complete the proof of Lemma 13 with the following
proposition, which claims that either the errors contained in
the isolated interval I can be corrected in e and the number
of errors in I is at least d − d∗, or the errors contained in I
cannot be corrected in e and the number of errors in I is at

least d + d∗. In particular, for errors that are not detectable,
i.e., when all the rows in E are equal, the number of errors
contained in E is either 0 or at least 2d. The proposition
will be used to prove the correctness of the encoding/decoding
algorithms in Section VI-C.

Proposition 4. Let the length of e be m. Then, e[1,p1−b1] =
Ew,[b1,p1−1] and e[m−(b2−p2)+1,m] = Ew,[p2+1,b2] for w ∈
[1, d]. In addition, the number of errors |(δw ∪ γw) ∩ I| ≥
d − d∗. If e[p1−b1+1,m−(b2−p2)] 6= cI , then the number of
errors |(δw ∪ γw) ∩ I| ≥ d + d∗ for d∗ ≥ 2. When d∗ = 1,
either |(δw ∪ γw) ∩ I| ≥ d+ d∗ or it can be determined that
|(δw ∪ γw) ∩ I| ≥ d. In particular, if the number of errors
|(δw ∪ γw) ∩ I| ≤ d− 1, then e[p1−b1+1,m−(b2−p2)] = cI .

Proof. Let Ei be the read matrix obtained after the ith
iteration, i ∈ [1, d − d∗]. Note that the number of rows in
Ei is d− i. Let the number of columns in Ei be mi.

Note that Ew,[b1,p1−1] and Ew,[p2+1,b2] are equal for w ∈
[1, d]. The concatenation in the algorithm keeps the first
p1 − b1 bits and the last b2 − p2 bits in each row. Therefore,
Ei
w,[1,p1−b1] = Ei

1,[b1,p1−1] and Ei
w,[mi−(b2−p2)+1,mi]

=
E1,[p2+1,b2] for w ∈ [1, d] and i ∈ [1, d − d∗], which
implies that sj[1,p1−b1] = Ei

w,[b1,p1−1] and sj[m−(b2−p2)+1,m] =

Ew,[p2+1,b2] for w ∈ [1, d].
Furthermore, we proved that

E1
[1,d−1],[p1−b1+1,m1−(b2−p2)] ∈ Ek1(cI) for some

k1 ≤ k′ − 1. By induction, it can be proved that
Ei

[1,d−i],[p1−b1+1,mi−(b2−p2)] ∈ Eki(cI) for some non-
negative ki ≤ ki−1− 1 for i ∈ [2, d− d∗]. Therefore, we have
that 0 ≤ kd−d∗ ≤ k′ − (d− d∗) and thus, k′ ≥ d− d∗.

If e[p1−b1+1,m−(b2−p2)] = Ed−d∗
w,[1,md−d∗] 6= cI for w ∈

[1, d∗], we let I = [i1, i2]. When d∗ = 1, according to
Lemma 12, the number of errors occur in I can be determined.
Therefore, if the parity of the number of errors occur in I is
different from the parity of d+1, we determine that the number
of errors in I is at least d. Otherwise, the number of errors in
I is at least d+ 1.

When d∗ ≥ 2, let i′ be the minimum index such that
i′ ≥ p1 − b1 + 1 satisfying Ed−d∗

w,i′ 6= ci1+i′−(p1−b1)−1,
i.e., Ed−d∗

w,[p1−b1+1,i′−1] = c[i1,i1+i′−(p1−b1)−2] and Ed−d∗
w,i′ 6=

ci1+i′−(p1−b1)−1. We show that (δw∪γw)∩[i′−T−2k′−1, i′+
k′ − 1] 6= ∅ for w ∈ [1, d∗]. Otherwise, there exists a w∗ ∈
[1, d∗], such that (δw∗∪γw∗)∩[i′−T−2k′−1, i′+k′−1] = ∅.
Assume now that there is a virtual read Ed−d∗

d∗+1,[1,md−d∗]. As-
sume that the distance between the d∗th head and the d∗+1th
head is far enough so that the first error occurs after index i′ in
the read5 Ed−d∗

d∗+1,[1,md−d∗]. Therefore, Ed−d∗
d∗+1,[p1−b1+1,i′−1] =

c[i1,i1+i′−(p1−b1)−2] = Ed−d∗
w,[p1−b1+1,i′−1] for w ∈ [1, d∗] and

Ed+1,i′ = ci1+i′−(p1−b1)−1. Applying Proposition 2 by con-
sidering a two-row matrix where the first row is Ed−d∗

w∗,[1,md−d∗]

and the second row is Ed−d∗
d∗+1,[1,md−d∗], we have that Ew∗,i′ =

Ed∗+1,i′ = ci1+i∗−(p1−b1)−1, contradicting to the definition of
i′. Hence, we have that (δw∪γw)∩[i′−T−2k′−1, i′+k′−1] 6=
∅ for w ∈ [1, d∗].

5This might require extending the length of the heads to larger than md−d∗

when an error occurs near index md−d∗ in the d∗th read in Ed−d∗ .

20 IEEE TRANSACTIONS ON INFORMATION THEORY

According to Proposition 3, we have that kd−d∗ ≥ 2d∗− 1.
Furthermore, by Lemma 11, we have that kd−d∗ is an even
number and thus kd−d∗ ≥ 2d∗. Therefore, we have that k′ ≥
kd−d∗+d−d∗ ≥ d+d∗, when e[p1−b1+1,m−(b2−p2)] 6= cI .

The algorithm described in Lemma 13 for correcting errors
in bits cIj , where Ij is associated with interval [b1j , b2j], j ∈
[1, J], is summarized in Algorithm 7.

Algorithm 7: Recovering most of the bits ci
Input: The read matrix E ∈ Ek(c, t) and an output

interval [b1j , b2j] of Algorithm 4 for any j ∈ [1, J]
Output: Sequences ej obtained from E1,[b1j ,b2j] by

correcting errors in interval Ij (the edit isolated
interval associated with [b1j , b2j]) in the first
head, when |δ1 ∩ Ij |+ |γ1 ∩ Ij | < d.

Initialization: Let E′ = E[1,d],[b1j ,b2j];
Step 1: Let i∗j be the minimum positive index such that

and there exist w,w′ ∈ [1, d] satisfying E′w,i∗j 6= E′w′,i∗j
,

for some j ∈ [1, J]. Let w∗j be an index such that
E′w∗j ,i∗j is the minority bit among {E′w,i∗j }

d
w=1. If no

such i∗j exists, go to step 6. Otherwise, go to Step 2;
Step 2: For each ` ∈ [1, k

2

4 + 3k] and w ∈ [1, d− 1], find
a unique integer xw,` ∈ [0, k] satisfying (38), or
xw,` ∈ [−k,−1] satisfying (39), where the index vw,` in
(38) and (39) is given by (37) when w∗j < d. When
w∗j = d, the indices vw,` and vw,`+1 are replaced by
i∗j − T − 3k − `(T + 3k + 1) + (w − w∗)t and
i∗j − T − 3k − 1− (`− 1)(T + 3k + 1) + (w − w∗)t,
respectively. If no such integer or more than one exist,
let xw,` = k + 1. Go to Step 3;

Step 3: Let the vector z ∈ {0, 1} k2

4 +3k be defined as in
(40). Find an index i such that (zi+1, . . . , zi+k−y+2) is
a 0 run, where y is the number of 1 runs in z. Go to
Step 4;

Step 4: Let E′′ be a new matrix. For each
w ∈ [1, d− 1], let the wth row of E′′ be given by
concatenating E′w+1,[1,vw,i+1+k] and
E′w,[vw,i+1+k+1,−xw,i+1:αw] where αw is the length of
the wth row of E′, when w∗j < d. When w∗j = d, the
wth row of E′′ is given by concatenating
E′w+1,[1,i∗j−T−3k−(i+1)(T+3k+1)+(w−w∗)t+k] and
E′w,[i∗j−T−3k−(i+1)(T+3k+1)+(w−w∗)t+k+1−xw,i+1:αw].
Go to Step 5;

Step 5: E′′ = E′ and go to Step 1;
Step 6: Output the first row of E′;

C. Encoding/Decoding Algorithms

We are now ready to present the encoding and decoding
algorithms. We first deal with cases when k ≥ 2d. Given any
input sequence c ∈ {0, 1}n, the encoding is similar to the one
in Section V, stated in (16) and (17) and is given by

Enc2(c) = (F (c), R
′

2(c), R
′′

2 (c)), (43)

where

R
′

2(c) = RS2bk/dc(S(F (c))),

R
′′

2 (c) = Repk+1(H(R
′

2(c))). (44)

The difference here is in the definition of the function
S(F (c)), instead of splitting F (c) into blocks of length B, as
in (6), we split F (c) into blocks of length B′ = Bo+k, where
Bo is the upper bound on the length of the output intervals
[b1j , b2j], j ∈ [1, J], defined in (18), i.e.,

F (c) =(a′1, . . . ,a
′
dn+k+1

B′ e
), and

S(F (c)) =(H(a′1), . . . ,H(a′dn+k+1
B′ e

)) (45)

It can be verified that the code has asymptotically the
same redundancy 2bk/dcmax{log(n + k + 1), 4k logB′ +
o(logB′)} = 2bk/dcmax{log n, 4k log t} + o(log n) as in
deletion only cases. In the following, we show that the
codeword Enc2(c) can be correctly decoded. We first show
the following proposition.

Proposition 5. For any c′ 6= c such that c′ and c share
the same redundancy R

′

2(c) = R
′

2(c′), we have that E /∈
Ek(Enc2(c′)), which implies that the input sequence c can be
uniquely determined given E ∈ Ek(Enc2(c)).

Proof. We show that F (c) and F (c′) differ in at most 2bk/dc
blocks if Enc2(c) and Enc2(c′) can result in the same read
matrix E ∈ Ek(Enc2(c)). Then, F (c) and F (c′) cannot
have the same RS2bk/dc(S(F (c))) = RS2bk/dc(S(F (c′))).
Suppose on the contrary, F (c) and F (c′) differ in at least
2bk/dc + 1 blocks. Note that each minimum edit isolated
interval has length at most k(d − 1)t ≤ B′. Otherwise it
cannot be minimum. Moreover, by Lemma 10 the interval
[b1j , b2j] has length at most B′−k. Hence, any minimum edit
isolated interval, either in Enc2(c) or Enc2(c′) in order to
obtain E, spans at most two blocks of Enc2(c) or Enc2(c′),
respectively. In addition, the bits of Enc2(c) or Enc2(c′) that
fall within interval [b1j , b2j] for some j after errors are covered
by at most two blocks. Let the at least 2bk/dc+1 blocks where
F (c) and F (c′) differ contain bits that fall within M ′ intervals
[b1j , b2j], j ∈ [1, J]. Then, at least 2bk/dc+ 1−2M ′ of these
blocks intersect with at least bk/dc + 1 −M ′ minimum edit
isolated intervals, either in Enc2(c) or Enc2(c′), that are not
contained in any [b1j , b2j], j ∈ [1, J]. According to Proposition
4, for any of the M ′ intervals [b1j , b2j] within which the at
least 2bk/dc+ 1 different blocks contain bits, the number of
errors in the edit isolated intervals associated with interval
[b1j , b2j] in Enc2(c)I and Enc2(c′)I are at least d− d∗ and
d+d∗, or d+d∗ and d−d∗, respectively, for some d∗ ≥ 1, or
both at least d. In either case, the sum of number of errors is
at least 2d. In addition, in any minimum isolated interval that
is not contained in [b1j , b2j] after errors, either in Enc2(c) or
Enc2(c′), the number of errors is at least 2d. Hence, the total
number of errors in Enc2(c) and Enc2(c′) should be at least
2dM ′+ 2d(bk/dc+ 1−M ′) > 2k, a contradiction to the fact
that E ∈ Ek(c, t) and E ∈ Ek(c′, t).

Next, we present the decoding algorithm. Similar to what
we did in the proof of Theorem 3 and Theorem 4, we use the

SIMA AND BRUCK: CORRECTING MULTIPLE DELETIONS AND INSERTIONS IN RACETRACK MEMORY 21

first row in E to decode R′2(c). From Lemma 4, we conclude
that we can first recover H(R′2(c)) and then R′2(c) using the
deletion correcting mapping in Lemma 3.

Then, We use Algorithm 4 to obtain a set of output intervals
[b1j , b2j] for j ∈ [1, J]. By Lemma 10, the output intervals
[b1j , b2j] for j ∈ [1, J] satisfy properties (A), (B), (C), (D),
(E). Then, we use Algorithm 7 to recover the bits Enc2(c)i
that do not fall within output intervals [b1j , b2j], j ∈ [1, J], af-
ter errors, where the indices i can be determined by Algorithm
7. The correctness of Algorithm 7 is guaranteed by Lemma 12.
Next, we apply Algorithm 7 to every output interval [b1j , b2j]
and E[1,d],[b1j ,b2j] and obtain an estimate sequence ej for
j ∈ [1, J]. The sequence ej is an estimate of the bits Enc2(c)i
that fall within intervals [b1j , b2j] after errors, i.e., the bits
Enc2(c)i that are not addressed in Algorithm 6. According
to Lemma 12, the errors in interval Ij , j ∈ [1, J], where Ij
is the edit isolated interval associated with [b1j , b2j], can be
recovered if |(δ1 ∪ γ1) ∩ Ij | < d.

Note that there are at most k
d intervals [b1j , b2j] such that

the errors in Ij are not recovered by Algorithm 7. Moreover,
there are at most J ≤ k intervals [b1j , b2j], j ∈ [1, J].
We enumerate all possibilities of the set of intervals among
{[b1j , b2j]}Jj=1 that are not corrected by Algorithm 7. There

are at most
∑ k

d
i=0

(
i
J

)
≤ kk+1 such choices. For each choice

{[b1ji , b2ji]}Mi=1, we assume that the set of the chosen intervals
{[b1ji , b2ji]}Mi=1, which cover at most 2M blocks in F (c) and
thus in S(F (c)), are corrupted by erasures. In addition, we
assume that there are at most k

d − M block substitutions
in F (c) and thus in S(F (c)). Then we apply the Reed-
Solomon decoder [14] to correct at the most 2M erasures
and at most k

d − M block substitutions in S(F (c)). In
addition, we calculate the total number of errors needed to
generate the read matrix E, when intervals {[b1ji , b2ji]}Mi=1 are
chosen, by using Proposition 4. We discard the choice of inter-
vals {[b1ji , b2ji]}Mi=1, either when Reed-Solomon decoding of
S(F (c)) is unsuccessful, or when the total number of errors
needed to generate E is greater than k. By Proposition 5, there
is a unique and correct choice of the intervals {[b1ji , b2ji]}Mi=1

that is not discarded. Therefore, we correctly recover S(F (c))
given R′2(c), by using the Reed-Solomon decoder [14]. Fi-
nally, we use S(F (c)) to recover F (c), and then c in the same
manner as in Section V. The time complexity is dominated by
the time needed to compute S(F (c)), which is O(nt2k+1).

For cases when d ≤ k ≤ 2d − 1. The codes are similar to
those in Section III, which is given by

Enc1(c) = (F (c), R
′

1(c), R
′′

1 (c)) (46)

where

R
′

1(c) = ER(S(F (c))),

R
′′

1 (c) = Repk+1(H(R′1(c))). (47)

Similar to cases when k ≥ 2d, we split F (c) into blocks of
length B′, the same as in (45). The redundancy is 8k log t +
o(log t). The correctness of the code is similar to cases when
k ≥ 2d. Note that when d ≤ k ≤ 2d−1, there is no minimum
edit isolated interval that is not within some interval [b1j , b2j].
In addition, there is at most one interval [b1j , b2j] where at

least d errors occur. We enumerate all choices of such interval.
Similar to the case when k ≥ 2d, to satisfy the number of
errors requirement, only the correct choice of the interval gives
a valid and correct decoded sequence c.

VII. CONCLUSIONS

We constructed d-head k-deletion racetrack memory codes
for any k ≥ d, extending previous works which addressed
cases when k ≤ d. We proved that for small head dis-
tances t = no(1) and for k ≥ 2d, the redundancy of
our codes is asymptotically at most four times the optimal
redundancy. We also generalized the results and proved that
the same redundancy results hold for d-head codes correcting
a combination of at most k deletions and insertions. Finding
a lower bound on the redundancy for d ≤ k ≤ 2d− 1 would
be interesting, for both deletion correcting codes and codes
correcting a combination of deletions and insertions. It is also
desirable to tighten the gap between the upper and lower
bounds of the redundancy for cases when k ≥ 2d.

REFERENCES

[1] J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-redundancy
codes for correcting multiple deletions,” in Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 1884–1892, 2016

[2] Y. Chee, H. Kiah, A.Vardy, V. Vu and E. Yaakobi, “Codes Correcting
limited-shift errors in racetrack memories,” in Proc. IEEE Int. Symp. on
Inform. Theory, pp. 96–100, 2018.

[3] Y. Chee, H. Kiah, A.Vardy, V. Vu and E. Yaakobi “Coding for racetrack
memories,” in IEEE Transactions on Information Theory, vol. 64, no. 11,
pp. 7094-7112, 2018.

[4] Y. Chee, R. Gabrys, A. Vardy, and V. K. Vu, and E. Yaakobi, “Recon-
struction from deletions in racetrack memories,” in Proc. IEEE Inform.
Theory Workshop, 2018.

[5] K. Cheng, Z. Jin, X. Li, and K. Wu, “Deterministic document exchange
protocols, and almost optimal binary codes for edit errors,” 59th IEEE An-
nual Symposium on Foundations of Computer Science (FOCS), pp. 200-
211, 2018

[6] M. Hayashi, L. Thomas, R. Moriya, C. Rettner and S. S. Parkin, “Current-
controlled magnetic domain-wall nanowire shift register,” in Science,
vol. 320, no. 5873, pp. 209–211, 2008.

[7] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, pp. 707–
710, 1966.

[8] V. I. Levenshtein, “Reconstructing objects from a minimal number of
distorted patterns,” (in Russian), in Dokl. Acad. Nauk vol. 354 pp. 593-
596; English translation, in Doklady Mathematics, vol. 55 pp. 417-420,
1997.

[9] S. S. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall
racetrack memory,” in Science, vol. 320, no. 5873, pp. 190–194, 2008.

[10] J. Sima and J. Bruck, “On optimal k-deletion correcting codes,” IEEE
Transactions on Information Theory, vol. 67, no. 6, pp. 3360-3375, 2020.

[11] J. Sima, R. Gabrys, and J. Bruck, “Optimal systematic t-deletion
correcting codes,” in Proc. IEEE Int. Symp. on Inform. Theory, pp. 769–
774, 2020.

[12] W. Song, N. Polyanskii, K. Cai, and X. He, ”On Multiple-Deletion
Multiple-Substitution Correcting Codes,” in Proc. IEEE Int. Symp. on
Inform. Theory, pp. 2655–2660, 2021.

[13] Z. Sun, W. Wu and H. Li, “Cross-layer racetrack memory design for
ultra high density and low power consumption,” in Design Automation
Conference (DAC), 2013 50th ACM/EDAC/IEEE, pp. 1–6, 2013.

[14] T. K. Truong, I. S. Hsu, W. L. Eastman, and I. S. Reed, ”Simplified
procedure for correcting both errors and erasures of Reed-Solomon code
using Euclidean algorithm, ” in IEE Proceedings E (Computers and
Digital Techniques), vol. 135, no. 6, pp.318–324, 1988

[15] A. Vahid, G. Mappouras, D. J. Sorin and R. Calderbank, ”Correcting
two deletions and insertions in racetrack memory,” in arXiv preprint
arXiv:1701.06478, 2017.

22 IEEE TRANSACTIONS ON INFORMATION THEORY

[16] R. Venkatesan, V. Kozhikkottu, C. Augustine, A. Raychowdhury, K. Roy
and A. Raghunathan “TapeCache: A high density, energy efficient cache
based on domain wall memory,” in Proceedings of the 2012 ACM/IEEE
international symposium on Low power electronics and design, pp. 185–
190, 2012.

[17] L. R. Welch and E. R. Berlekamp, “Error correction for algebraic block
codes,” US Patent Number 4,633,470, December 1986.

[18] C. Zhang, G. Sun, X. Zhang, W. Zhang, W. Zhao, T. Wang, Y. Liang,
Y. Liu, Y. Wang and J. Shu, “Hi-fi playback: Tolerating position errors
in shift operations of racetrack memory,” in ACM SIGARCH Computer
Architecture News, vol. 43, no. 3, pp. 694–706, 2015.

Jin Sima received a B.Eng. and a M.Sc. in electronic engineering from
Tsinghua University, China, in 2013 and 2016 respectively, and a Ph.D in
electrical engineering from California Institute of Technology (Caltech) in
2022. He is currently a postdoctoral researcher in the Department of electrical
and computer engineering at University of Illinois Urbana-Champaign. His
research interests include information and coding theory and their applications,
with its applications in data storage systems. He is a recipient of the 2019
IEEE Jack Keil Wolf ISIT Student Paper Award, the 2020-2021 IEEE
Communication Society Data Storage Best Paper Award, the 2022 Caltech
Charles Wilts Prize for best doctoral thesis.

Jehoshua Bruck (Life Fellow, IEEE) received the B.Sc. and M.Sc. degrees
in electrical engineering from the TechnionIsrael Institute of Technology in
1982 and 1985, respectively, and the Ph.D. degree in electrical engineering
from Stanford University in 1989.

He is currently the Gordon and Betty Moore Professor of computation
and neural systems and electrical engineering at the California Institute
of Technology (Caltech). His current research interests include information
theory and systems and the theory of computation in nature. His industrial
and entrepreneurial experiences include working with IBM Research, where
he has participated in the design and implementation of the first IBM
parallel computer, cofounding and serving as the Chairman for Rainfinity
(acquired in 2005 by EMC), that created the first virtualization solution
for network attached storage; cofounding and serving as the Chairman for
XtremIO (acquired in 2012 by EMC), a start-up company that created the
first scalable all-flash enterprise storage system; and cofounding and serving
as the Chairman for MemVerge, a start-up company that is pioneering big
memory computing.

Dr. Bruck was a recipient of the Feynman Prize for Excellence in Teaching,
the Sloan Research Fellowship, the National Science Foundation Young
Investigator Award, the IBM Outstanding Innovation Award, and the IBM
Outstanding Technical Achievement Award.

	Introduction
	Preliminaries
	Problem Settings
	Racetrack Memory with Insertion and Deletion errors
	Lemmas

	Correcting up to 2d-1 deletions with d heads
	Proof of Lemma 7
	Identifying Intervals I*j
	Determining the Number of Deletions

	Correcting k2d deletions
	Correcting k Deletions and Insertions
	Determine Bits Outside Edit Isolated Intervals
	Correcting k<d Deletions and Insertions
	Encoding/Decoding Algorithms

	Conclusions
	References
	Biographies
	Jin Sima
	Jehoshua Bruck

