
Correcting Deletions in Multiple-Heads
Racetrack Memories

Jin Sima and Jehoshua Bruck
Department of Electrical Engineering, California Institute of Technology, Pasadena 91125, CA, USA

Abstract—One of the main challenges in developing racetrack
memory systems is the limited precision in controlling the
track shifts, that in turn affects the reliability of reading and
writing the data. The current proposal for combating deletions
in racetrack memories is to use redundant heads per-track
resulting in multiple copies (potentially erroneous) and solving a
specialized version of a sequence reconstruction problem. Using
this approach, k-deletion correcting codes of length n, with d
heads per-track, with redundancy log logn+4 were constructed.
However, the code construction requires that k ≤ d. For k > d,
the best known construction improves slightly over the classic
one head deletion code. Here we address the question: What is
the best redundancy that can be achieved for a k-deletion code
(k is a constant) if the number of heads is fixed at d (due to area
limitations)? Our key result is an answer to this question, namely,
we construct codes that can correct k deletions, for any k beyond
the known limit of d. The code has O(k4d log log n) redundancy
for the case when k ≤ 2d − 1. In addition, when k ≥ 2d, the
code has 2bk/dc logn+ o(logn) redundancy.

I. INTRODUCTION

Racetrack memory is a promising non-volatile memory that
possesses the advantages of ultra-high storage density and low
latency (comparable to SRAM latency) [8], [9]. It has a tape-
like structure where the data is stored sequentially as a track
of single-bit memory cells. The cells are accessed through
read/write ports, called heads. When reading/writing the data,
the heads stay fixed and the track is shifting.

One of the main challenges in developing racetrack memory
systems is the limited precision in controlling the track shifts,
that in turn affects the reliability of reading and writing the
data [5], [11]. Specifically, the track may either not shift or
shift more steps than expected. When the track does not shift,
the same cell is read twice, causing a sticky insertion. When
the track shifts more than a single step, cells are skipped,
causing deletions in the reads [3].

It is natural to use deletion and sticky insertion correct-
ing codes to deal with shift errors. Also, it is known that
a code correcting k deletions is capable of correcting s
deletions and r insertions when s + r ≤ k [6]. However,
designing redundancy and complexity efficient deletion cor-
recting codes has been an open problem for decades. In
fact, no deletion correcting codes with rate approaching 1
were known until recently, when [1] proposed a code with
redundancy 128k2 log k log n + o(log n). Evidently, for k, a
constant number of deletions, the redundancy of this code is
orders of magnitude away from optimal, known to be in the

The work was supported in part by NSF grants CCF-1816965 and CCF-
1717884 .

range k log n+o(log n) to 2k log n+o(log n). Hence, it is nat-
ural to explore constructions of deletion correcting codes that
are specialized for racetrack memories and might provide more
efficient redundancy and lower complexity encoding/decoding
algorithms.

There are two approaches for construction of codes for
racetrack memories. The first is to leverage the fact that
there are multiple parallel tracks with a single head per-track,
and the second, is to add redundant heads per-track. For the
multiple parallel head structure, the proposed codes in [10]
can correct up to two deletions per head and the proposed
codes in [2] can correct l bursts of deletions, each of length
at most b. The codes in [2] are asymptotically (in the number
of heads) rate-optimal. The second approach for combating
deletions in racetrack memories is to use redundant heads per-
track [11], [3], [4], resulting in multiple copies (potentially
erroneous) of the same sequence. This can be regarded as a
sequence reconstruction problem, where a sequence c needs
to be recovered from multiple copies, each obtained after k
deletions in c. We emphasize that the general sequence re-
construction problem [7] is different from the current settings,
as here the heads are at fixed and known positions, hence,
the set of deletions locations in one head is a shift of that
in another head [3]. Demonstrating the advantage of multiple
heads, the paper [4] proposed an efficient k-deletion code of
length n with redundancy log log n+4. In contrast, for general
k-deletion codes the lower bound on the redundancy is k log n.
However, the code in [4] is required to use d heads and is
limiting k to be smaller or equal to d. For k larger than d,
the best construction [3] reduces the problem to designing
a k − d+ 1 deletion code (e.g., [1]) for single head cases. It
is known that the number of heads affects the area overhead
of the racetrack memory device [3], hence, it motivates the
following natural question: What is the best redundancy that
can be achieved for a k-deletion code (k is a constant) if the
number of heads is fixed at d (due to area limitations)?

Our key result is an answer to this question, namely,
we construct codes that can correct k deletions, for any k
beyond the known limit of d. Our code has O(k4d log log n)
redundancy for the case when k ≤ 2d − 1. In addition,
when k ≥ 2d, the code has 2bk/dc log n + o(log n) redun-
dancy. Our key result is summarized formally by the following
theorem. Notice that the theorem implies that the redundancy
of our codes is asymptotically larger than optimal by a factor
of at most four.

Theorem 1. For a constant integer k, let the distance t



between any two consecutive heads be max{(3k + dlog ne+
2)[k(k−1)/2+1]+(7k−k3)/6, (4k+1)(5k+dlog ne+3)}.
Then for d ≤ k ≤ 2d − 1, there exists a length N =
n+4k[2(4k+1)kd+4k+5/2] log log n+o(log log n) d head k-
deletion correcting code with redundancy 4k[2(4k + 1)kd +
4k + 5/2] log log n + o(log log n). For k ≥ 2d, there exists a
length N = n + 2bk/dc log n + o(log n) d head k-deletion
correcting code with redundancy 2bk/dc log n + o(log n).
The encoding and decoding functions can be computed
in Ok(poly(n)) time. Moreover, for k ≥ 2d and ti = no(1),
the amount of redundancy of a d head k-deletion correcting
code is lower bounded by bk/2dc log n+ o(log n).

Organization: Due to space limitation, we prove our main
result for the case k ≤ 2d− 1. The proof for the case k ≥ 2d
is similar. The proof of the lower bound on the redundancy
will be presented in a longer version. In Section II we present
some basic lemmas needed in our proof. Section III presents
the proof of the main result for the case k ≤ 2d−1. Section IV
describes in detail how to synchronize the reads.

II. PRELIMINARIES

A. Notations and Model

For any two numbers i ≤ j, let [i, j] = {i, i+1, . . . , j−1, j}
be the set of consecutive numbers between i and j. Let [i, j] =
∅ for i > j. For a length n sequence c = (c1, . . . , cn) and an
index set I ⊆ [1, n], let cI = (ci : i ∈ I) be a subsequence
of c. For a n1×n2 matrix D and two index sets I1 ⊆ [1, n1]
and I2 ⊆ [1, n2], let DI1,I2 denote the submatrix of D formed
by choosing the intersection of the rows i ∈ I1 and the
columns j ∈ I2.

For a deletion location set δ ⊆ [1, n], denote by δc =
[1, n]\δ the complement of δ. Let c(δ) = cδc = (ci : i /∈ δ)
be the subsequence obtained by deleting bits with locations in
the deletion location set δ.

In a d head racetrack memory, the heads are placed on the
same track and stay fixed. As the track moves step by step,
the heads read the same copy of data d times. A deletion or
insertion happens for all reads when the track moves two steps
or does not move at a time. As a result, the deletion/insertion
locations in one head is a shift version of that in another head.
In this paper we focus on the deletion errors.

Let the distance between the i-th head and the i + 1-th
head be ti, i ∈ [1, d − 1]. Denote as δi = {δi,1, . . . , δi,k} ⊆
[1, n], i ∈ [1, d] the location of deletions occur at the i-th
head. Then we have that δi+1 = δi + ti, where for a set of
numbers A and a number t, A+ t = {x+ t : x ∈ A}.

The read of the i-th head is given by c(δi), i ∈ [1, d]. Define
the read matrix D(c, δ1, . . . , δd) to be a d × (n − k) matrix
where the i-th row of D(c, δ1, . . . , δd) is c(δi). The deletion
ball Dk(c) of a sequence c ∈ {0, 1}n is the set of all possible
read matrices in a d head racetrack memory, i.e.,

Dk(c) = {D(c,δ1, . . . , δd) : δi+1 = δi + ti,

|c| = n, δi ⊆ [1, n], |δi| = k, i ∈ [1, d− 1]}.

A d head k deletion code C is the set of all length n sequences
such that the deletion balls of any two do not intersect, i.e.,

for any c, c′ ∈ C, Dk(c) ∩ Dk(c
′) = ∅. The redundancy of

the code is n− log |C|.
A sequence c ∈ {0, 1}n is said to have period ` if ci = ci+`

for i ∈ [1, n − `]. We use L(c, i) to denote the length of the
longest subsequence of consecutive bits in c that has period i.
Furthermore, define

L(c,≤ k) = max
i≤k

L(c, i).

Finally, the number of elements of a set A is denoted by |A|.
For any two sets A and B, the set A\B = {x : x ∈ A, x /∈ B}
denote the difference of sets A and B.

B. Useful Lemmas
Here we present some lemmas that will be useful throughout

the paper. Our construction is based upon a deletion code
for short lengths, which can be computed by brute force
in Ok(poly(n)) time when the length is of order Ok(log n).
The following result appears in [1].

Lemma 1. Let k be a fixed integer. There exists a hash
function H : {0, 1}n → {0, 1}2k logn+O(1), computable
in Ok(n

2k2n) time, such that any sequence c ∈ {0, 1}n can
be recovered from any of its length n − k subsequences and
the hash H(c).

With the function H , it is not hard to protect a longer
length sequence from k deletions by chopping it into short
subsequences and protect each short subsequence using H .
The following lemma is a slight variation of the result in [1].

Lemma 2. Let k be a fixed integer. For integers B
and n. There exists a hash function Hash :
{0, 1}B → {0, 1}d(B/dlogne)e(2k log logn+O(1)), computable
in Ok(dB/ log nen log2k n) time, such that any
sequence c ∈ {0, 1}B can be recovered from any of its
length B − k subsequences and the hash Hash(c).

In addition, in order to synchronize the sequence c in
the presence of deletions, we need to transform c to a
sequence that has a limited length constraint on its periodic
subsequences. Such constraint was used in [3], where it was
proved that the redundancy of the code {c : L(c,≤ k) ≤
dlog ne + k + 1} is at most 1 bit. In the following lemma
we present a function to transform any sequence to one that
satisfies this constraint. The redundancy of our construction
is k+1 bits. However, it is small compared to the redundancy
of the d head k-deletion code.

Lemma 3. For any integers k and n, there exists an in-
jective function F : {0, 1}n → {0, 1}n+k+1, computable
in O(kn2 log n) time, such that for any sequence {0, 1}n, we
have that L(F (c),≤ k) ≤ 3k + 2 + dlog ne.

Finally, we restate one of the main results in [3] that will
be use in our construction. It is a code that can correct d− 1
deletions in a d head racetrack memory, given that the distance
between any two consecutive heads is large enough.

Lemma 4. Let d ≤ k be two integers and C be a k − d + 1
deletion code, then C ∩ {c : L(c,≤ k) ≤ T} is a d head k-
deletion correcting code, given that the distance between any



two consecutive heads ti ≥ T [k(k− 1)/2 + 1] + (7k− k3)/6
for i ∈ [1, d− 1].

III. CORRECTING UP TO 2d− 1 DELETIONS WITH d HEADS

In this section we construct a k-deletion d head code for
the case when k ≤ 2d − 1. To this end, we first present a
lemma that is the basis of our code construction. The lemma
states that the deletion locations can be identified within a set
of short intervals. Moreover, the number of deletions within
each interval can be determined. The proof of this lemma will
be given in Section IV.

Definition 1. Let δi = {δi,1, . . . , δi,k} be the set of deletion
locations in the i-th head of an d head racetrack memory, i.e.
δi+1 = δi + ti, for i ∈ [1, d − 1]. An interval I is deletion
isolated if

δi+1 ∩ I = ti + δi ∩ I,

for i ∈ [1, d− 1].

Example 1. Consider a 3 head racetrack memory with head
distances t1 = 1 and t2 = 2. Let the length of the sequence c
be n = 22 and the deletion positions in the heads be given by

δ1 = {1, 2, 4, 8, 14, 17},
δ2 = {2, 3, 5, 9, 15, 18}, and
δ3 = {4, 5, 7, 11, 17, 20},

then intervals [1, 7], [8, 12], and [12, 22] are deletion isolated.

Intuitively, an interval I is deletion isolated when the
subsequences cI∩δc

i
for i ∈ [1, d] can be regarded as the d

reads of the sequence cI in a d head racetrack memory
after |δ1 ∩ I| deletions.

Lemma 5. For any positive integers n and R ≥ k+1, let c ∈
{0, 1}n+R be a sequence such that L(c[1,n+k+1],≤ k) ≤ 3k+

dlog ne + 2 , T . Let the distance ti between head i and
head i + 1 satisfy ti ≥ (4k + 1)(T + 2k + 1) , Tmin and
tmax = maxi∈{1,...,d−1} ti be the largest distance between two
consecutive heads. Then given D ∈ Dk(c), it is possible to
find a set of J ≤ k disjoint and deletion isolated intervals Ij ⊆
[1, n + R], j ∈ [i, J ] such that δw ⊂ ∪Jj=1Ij for w ∈ [1, d]
and |Ij ∩ [1, n+ k + 1]| ≤ (2b(2tmax + T + 1)/2c+ 1)kd+
b(2tmax+T+1)/2c+k , B, for j = 1, . . . , J . Moreover, |δ1∩
Ij | can be determined for j ∈ {1, . . . , J}.

Let c be a sequence satisfying L(c[1,n+k+1],≤ k) ≤ T .
Then from this lemma, the bit ci can be identified for i ∈
[1, n+ k + 1]\(∪Jj=1Ij), given D ∈ Dk(c). This is because

ci = D1,i−
∑

j:Ij∈[1,i−1] |δ1∩Ij | (1)

for i ∈ [1, n+ k+ 1]\(∪Jj=1Ij). Hence we are left to recover
cIj for j ∈ [1, J ]. Split c[1,n+k+1] into blocks

ai = c[(i−1)B+1,max{iB,n+k+1}], i ∈ {1, . . . , d(n+ k + 1)/Be}
(2)

of length B except that ad(n+k+1)/Be may have length shorter
than B. By Lemma 4 the bits cIj with |δ1 ∩ Ij | < d can

be recovered, since Ij is deletion isolated and the head
distance satisfies ti ≥ T [k(k − 1)/2 + 1] + (7k − k3)/6
for i ∈ {1, . . . , d − 1}. Note that there is at most a single
interval Ij1 that satisfies |δ1 ∩ Ij1 | ≥ d when k ≤ 2d − 1.
Since |Ij1 ∩ [1, n + k + 1]| ≤ B, the interval Ij1 covers at
most two blocks aj1 and aj1+1. It follows that there are at
most two consecutive blocks, covered by Ij1 , that remain to
be recovered. Both block contain at most k deletions.

For any integer n and sequence c ∈ {0, 1}n+k+1 of
length n + k + 1, let the function S : {0, 1}n+k+1 →
Fd(n+k+1)/Be
2d(B/dlog ne)e(2k log log n+O(1)) be defined by

S(c) = (Hash(a1), Hash(a2), . . . ,Hash(ad(n+k+1)/Be)),
(3)

where ai, i ∈ {1, . . . , d(n + k + 1)/Be} are the blocks of c
defined in Eq. (2). The sequence S(c) is a concatenation of the
hashes Hash of blocks of c. Note that Hash(ai) is the i-th
symbol of S(c).

Lemma 6. If B > k, there exists a function DecS :
{0, 1}n+1 × {0, 1}d(n+k+1)/BedB/ logne(2k log logn+O(1)) →
{0, 1}n+k+1, such that for any sequence c ∈ {0, 1}n+k+1

and its length n + 1 subsequence d ∈ {0, 1}n+1, we have
that DecS(d, Sk(c)) = c, i.e., the sequence c can be recov-
ered from k deletions with the help of S(c).

Now we are ready to present the code construction. For any
sequence c ∈ {0, 1}n, define the following encoding function:

Enc(c) = (F (c), R′(c), R′′(c)) (4)

where

R′(c) = ER(S(F (c))),

R′′(c) = Repk+1(H(R′(c))). (5)

The function ER is the parity of a code that corrects two
consecutive erasures, which computes the modulo sum of
symbols at the even and odd positions respectively. The func-
tion Repk+1 is a k+1-fold repetition function that repeats each
bit k+1 times. Note that we use F (c) ∈ {0, 1}n+k+1 to obtain
a sequence satisfying L(F (c),≤ k) ≤ T so that Lemma 5
can be applied. The redundancy consists of two layers. The
function R′(c) can be regarded as the first layer redundancy,
with the help of which F (c) can be recovered from k dele-
tions. It computes the redundancy of a code that corrects two
consecutive symbol erasures in S(F (c)). Notice that S(F (c))
is a sequence of dn/Be symbols. The function R′′(c) can
be seen as the second layer redundancy that helps recover
itself and R′(c) from k deletions. The length of the code-
word Enc(c) is given by N = n+4k[3k2(k−1)d/2+3kd+
3/2] log log n+ o(log log n) when ti = max{(3k+ dlog ne+
2)[k(k−1)/2+1]+(7k−k3)/6, (4k+1)(5k+ dlog ne+3)}
for i ∈ [1, d − 1]. The next theorem proves Theorem 1 for
cases when d ≤ k ≤ 2d− 1.

Theorem 2. The set C = {Enc(c) : c ∈ {0, 1}n} is a k
deletion d head correcting code for d ≤ k ≤ 2d − 1, if
the distance between any two consecutive heads satisfies ti =
max{(3k+ dlog ne+2)[k(k− 1)/2+1]+ (7k−k3)/6, (4k+



1)(5k + dlog ne + 3)}, i ∈ {1, . . . , d − 1}. The code C can
be constructed, encoded, and decoded in Ok(poly(n)) time.
The redundancy of C is N − n = 4k[3k2(k − 1)d/2 + 3kd+
3/2] log log n+ o(log log n).

IV. PROOF OF LEMMA 5

Let D ∈ Dk(c) be the d reads from all heads, where c
satisfies L(c[1,n+k+1],≤k) ≤ T . Then D is a d by n+R− k
matrix. The proof of Lemma 5 consists of two steps. The first
step is to identify a set of disjoint intervals I ′j , j ∈ [1, J ] that
satisfy |I ′j ∩ [1, n+ 1]| ≤ B − k and J ≤ k. Moreover, there
exist a set of disjoint and deletion isolated intervals Ij , j ∈
[1, J ], such that δi ⊆ ∪Jj=1Ij and Di,I′j = cIj∩δc

i
for i ∈ [1, d]

and j ∈ [1, J ], i.e., the subsequence Di,I′j of the i-th read can
be obtained by deleting cIj∩δi in cIj . Note that δi+1 ∩Ij =
ti+δi∩Ij for i ∈ [1, d−1] and j ∈ [1, J ], since Ij is deletion
isolated. In addition, we have that |Ij ∩ [1, n + k + 1]| ≤ B,
since |I ′j ∩ [1, n + 1]| ≤ B − k and |Ij | ≤ |I ′j | + k. The
second step is to determine the number of deletions |δi ∩ Ij |
for i ∈ [1, d] and j ∈ [1, J ], based on D[1,d],I′j . Then,

Ij = [i2j−1 +

j−1∑
`=1

|δ1 ∩ I`|, i2j +
j∑

`=1

|δ1 ∩ I`|],

where I ′j = [i2j−1, i2j ] for j ∈ [1, J ]. It is assumed that ij > il
for l < j. The disjointness of Ij , j ∈ [1, J ] follows from the
fact that I ′j , j ∈ [1, J ] are disjoint. The two steps will be made
explicit in the following two subsections respectively.

A. Identifying Intervals I ′j
The procedure for identifying intervals I ′j is as follows.
• Initialization: Set all w ∈ [1, n + R − k] unmarked.

Let i = 1. Find the largest positive integer L such that
the sequences Dj,[i,i+L−1] are equal for all j ∈ [1, d].
If such L exists and satisfies L > tmax, mark the
numbers w ∈ [1, L− tmax]. Go to Step 1.

• Step 1: Find the largest positive integer L such that the
sequences Dj,[i,i+L−1] are equal for j ∈ [1, d]. Go to
Step 2. If no such L exists, set L = 0 and go to Step 2.

• Step 2: If L ≥ 2tmax + T + 1, mark the numbers w ∈
[i+tmax,min{i+L−1, n+1}−tmax]. Set i = i+L+1
and go to Step 3. Else i = i+ 1 and go to Step 3.

• Step 3: If i ≤ n+ 1, go to Step 1. Else go to Step 4.
• Step 4: If the number of unmarked intervals1

within [1, n+1] is not greater than k, output all unmarked
intervals. Else output the first k intervals, i.e., the intervals
with the minimum k starting indices.

We prove that the output intervals satisfy the above constraints.
The following lemma will be used.

Lemma 7. Let D ∈ Dk(c) for some sequence c satisfy-
ing L(c[1,n+k+1],≤ k) ≤ T . Let Tmin = mini∈[1,d−1] ti
and tmax = maxi∈[1,d−1] ti such that Tmin ≥ k(T + 1) + 1.
If Dw1,[i1,i2] = Dw2,[i1,i2] for some interval [i1, i2] ⊆ [1, n+1]
with length i2 − i1 + 1 ≥ 2tmax + T + 1 and for all

1An unmarked interval [i, j] means that w ∈ [i, j] are not marked and i−1
and j + 1 are marked. It is assumed that 0 and n+R+ 1− k are marked.

different w1, w2 ∈ [1, d], then there are no deletions happen
within bits Dw,[i1+tmax,i2−tmax] for all w, i.e., there exists
integers i′1 = i1+tmax+|δw∩[1, i′1−1]| and i′2 = i2−tmax+
|δw ∩ [1, i′2 − 1]|, such that c[i′1,i′2] = Dw,[i1+tmax,i2−tmax]

and [i′1, i
′
2] ∩ δw = ∅ for w ∈ [1, d]. Moreover, both

intervals [1, i′1 − 1] and [i′2 + 1, n+R] are deletion isolated.

Let [p2j−1, p2j ], j ∈ [1, J ′] be the marked intervals in the
procedure, where p1 < . . . < p2J′ . Let p0 = 0 and p2J′+1 =
n + R + 1, then the output intervals are the first up to k
nonempty intervals among {[p2j + 1, p2j+1 − 1]}J′j=0. Note
that the interval [n + 1 − tmax, n + R − k] is not marked
in the procedure. Hence, according to Lemma 7, there exist
intervals [p′2j−1, p

′
2j ], j ∈ [1, J ′], where

p′j = pj + |δw ∩ [1, p′j − 1]|, and

[p′2`−1, p
′
2`] ∩ δw = ∅, (6)

for all j ∈ [1, 2J ′], ` ∈ [1, J ′], and w ∈ [1, d]. More-
over, intervals [1, p′2j−1 − 1] and [p′2j + 1, n + R] are
deletion isolated2 for j ∈ [1, J ′]. Then we have that the
intervals [p′2j + 1, p′2j+1 − 1], j ∈ [0, J ′], where p′0 =
0, p′2J+1 = n+R+1, are deletion isolated. From (6) we have
that Dw,[p2j+1,p2j+1−1] = c[p′2j+1,p′2j+1−1]∩δc

w
. In addition, the

intervals {[p′2j + 1, p′2j+1 − 1]}J′j=0 are disjoint.
Furthermore, for any output interval [p2j + 1, p2j+1 − 1] ⊆

[1, n+1−tmax], the corresponding interval [p′2j+1, p′2j+1−1]
contains at least one deletion in δw, i.e., [p′2j + 1, p′2j+1 −
1] ∩ δw 6= ∅ for some w ∈ [1, d]. Otherwise, we have
that [p′2j+1, p′2j+1−1]∩δw = ∅ for w ∈ [1, d], which implies
that the interval [p2j + 1, p2j+1 − 1] is marked during the
algorithm. Therefore, there are at most k unmarked intervals
that lie within the interval [1, n+1]. Then it can be shown that
the deletions δw are contained in first up to k output intervals.

Finally, we show that |I ′j ∩ [1, n + 1]| ≤ B − k. It can be
proved that for any unmarked index i ∈ [1, n+1−btmax+(T+
1)/2c], there exists some w ∈ [1, d] and k1 ∈ [1, k], such that
a deletion δw,k1

occurs within distance btmax+(T +1)/2c to
the corresponding bit ci′=i+|δw∩[1,i′−1]| of Dw,i, i.e., δw,k1

∈
[i′−btmax+(T +1)/2c, i′+btmax+(T +1)/2c]3. Otherwise,
we have that i is marked. On the other hand, any deletion δw,k1

covers at most 2b(2tmax +T +1)/2c+1 unmarked positions
in [1, n+1−btmax+(T+1)/2c]. Then the number of unmarked
bits in [1, n+ 1] is at most (2b(2tmax + T + 1)/2c+ 1)kd+
b(2tmax + T + 1)/2c = B − k.

B. Determining the Number of Deletions
We now present the algorithm for determining the number

of deletions |δi ∩ Ij |, i ∈ [1, d], for any deletion isolated
interval Ij ⊆ [1, n+k+1]. The inputs to this algorithm are the
reads D[1,d],I′j obtained by deleting cδi∩Ij , i ∈ [1, d] from cIj .
Note that the interval Ij is not known at this point. In the
algorithm only the first two reads D[1,2],I′j are used. Let Ij =

2If the interval [p1, p2] is marked in the initialization step and has length
less than 2T+tmax+1, apply Lemma 7 by imagining an interval [−tmax+
T + 1, 0] where Dw,[−tmax+T+1,0] are equal for w ∈ [1, d].

3When i′ − btmax + (T + 1)/2c < 0, consider imaginary
bits Dw,[i′−btmax+(T+1)/2c,0] that are equal for w ∈ [1, d].



[bmin, bmax] for some integers bmin and bmax. Consider the
following intervals,

Bi,m =[bmin + (i− 1)t1 + (m− 1)(T + 2k + 1),

min{bmin + (i− 1)t1 +m(T + 2k + 1)− 1, bmax}],

for i ∈ [1, d(bmax − bmin + 1)/t1e] and m ∈ [1,min{4k +
1, d((bmax − bmin + 1) mod t1)/(T + 2k + 1)e}]. The inter-
vals Bi,m are disjoint and have length T + 2k + 1 except
when i = d(bmax − bmin + 1)/t1e and m = min{4k +
1, d((bmax − bmin + 1) mod t1)/(T + 2k + 1)e} the length
might be less. Let Um = ∪iBi,m be the union of intervals Bi,m
with the same m for m ∈ [1, 4k+1]. Then the unions Um, m ∈
[1, 4k + 1], are disjoint. Since the deletions occur in at
most 2k positions in the first two heads, at least 2k + 1
unions {Um1

, . . . ,Um2k+1
} satisfy Uml

∩ (δ1 ∪ δ2) = ∅
for l ∈ [1, 2k + 1]. Similarly, let Ij = [b′min, b

′
max] for some

integers b′min and b′max. Define the intervals

B′i,m = [b′min + (i− 1)t1 + (m− 1)(T + 2k + 1),

min{b′min + (i− 1)t1 +m(T + 2k + 1)− k − 1, b′max}],

for i ∈ [1, d(b′max − b′min + 1)/t1e] and m ∈ [1,min{4k +
1, d((b′max− b′min+1) mod t1)/(T +2k+1)e}]. Since De,I′j
can be obtained by deleting bits cδe∩Ij from cIj , it can
be shown that the sequence De,B′i,j is a length T + k + 1
subsequence of cBi,m

for e ∈ {1, 2} and for all i, j except for
the last at most two pairs (i,m), the interval B′i,m may not
exist. Let IM′ = {(i,m) : B′i,m 6= ∅} be the set of (i,m)
pairs for which B′i,m is defined. For (i,m) ∈ IM′, let p′i,m
and q′i,m be the beginning and end points of interval B′i,m,
i.e., B′i,m = [p′i,m, q

′
i,m]. Similarly, let [pi,m, qi,m] = Bi,m.

The algorithm is given as follows.
• Step 1: For all (i,m) ∈ IM′, find a unique inte-

ger 0 ≤ xi,m ≤ k such that D1,[p′i,m,q′i,m−xi,m] =
D2,[p′i,m+xi,m,q′i,m]. If no or more than one such integers
exist, let xi,m = 0. Go to Step 2.

• Step 2: For all m ∈ [1, 4k + 1], compute the sum sm =∑
(i,m)∈IM′ xi,m. Go to step 3.

• Step 3: Output the majority among {sm}4k+1
m=1 .

To prove the correctness of the algorithm, it suffices to show
that sml

= |Ij ∩ δ1| for all l ∈ [1, 2k + 1]. First, we show
that the unique integer xi,ml

satisfying D1,[p′i,ml
,q′i,ml

−xi,ml
] =

D2,[p′i,ml
+xi,ml

,q′i,ml
] exists. Moreover, the integer xi,ml

equals |δ1 ∩ [p1,1, pi,ml
− 1]| − |δ2 ∩ [p1,1, pi,ml

− 1]|, the
difference between deletion numbers in the first two heads
before the interval Bi,ml

. Let x = |δ1 ∩ [p1,1, pi,ml
− 1]| −

|δ2∩[p1,1, pi,ml
−1]|, it can be verified that the integer xi,ml

=
x satisfies D1,[p′i,ml

,q′i,ml
−xi,ml

] = D2,[p′i,ml
+xi,m,q′i,ml

]. We
show such xi,ml

is unique. Suppose there exists another
integer y > x for which D1,[p′i,ml

,q′i,ml
−y] = D2,[p′i,ml

+y,q′i,ml
].

Then,

c[p′i,ml
+|δ1∩[p1,1,pi,ml

−1]|,q′i,ml
+|δ1∩[p1,1,pi,ml

−1]|−y]

=c[p′i,ml
+|δ1∩[p1,1,pi,ml

−1]|+y−x,q′i,ml
+|δ1∩[p1,1,pi,ml

−1]|−x].

It then follows that

L(c[p′i,ml
+|δ1∩[p1,1,pi,ml

−1]|,q′i,ml
+|δ1∩[p1,1,pi,ml

−1]|−x], y − x)
=q′i,ml

− x− p′i,ml
+ 1 ≥ T + k + 1− k + 1 > T + 1

which is a contradiction to the fact that L(c,≤ k) ≤ T .
Similarly, such contradiction occurs when y < x. Hence
such xi,ml

is unique.
Next, we show that sml

= |δ1 ∩ Ij | for l ∈ [1, 2k + 1].
Since pi,ml

− pi−1,ml
= t1 for i ∈ [2,max(i,m)∈IM′ i], we

have that

|δ1 ∩ [p1,1, pi,ml
− 1]|

=|δ1 ∩ [p1,1, p1,ml
− 1]|+

i−1∑
w=1

|δ1 ∩ [pw,ml
, pw+1,ml

− 1]|

=|δ2 ∩ [p2,1, p2,ml
− 1]|+

i−2∑
w=1

|δ2 ∩ [pw+1,ml
, pw+2,ml

− 1]|

+ |δ1 ∩ [pi−1,ml
, pi,ml

− 1]|
=|δ2 ∩ [p1,1, pi,ml

− 1]|+ |δ1 ∩ [pi−1,ml
, pi,ml

− 1]|,

It then follows that xi,ml
= |δ1∩[pi−1,ml

, pi,ml
−1]| (p0,ml

=
p1,1) and that

sml
= |δ1 ∩ [p1,1, pmax(i,m)∈IM′ i,ml

− 1]|

Note that δ1 ∩ [pmax(i,m)∈IM′ i,ml
, bmax] ⊆ δ1 ∩ [bmax − t1 +

1, bmax] = ∅. Hence, we have that sml
= |δ1 ∩ Ij |. Then the

majority rule works.

REFERENCES

[1] J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-redundancy
codes for correcting multiple deletions,” in Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 1884–1892. 2016

[2] Y. Chee, H. Kiah, A.Vardy, V. Vu and E. Yaakobi, “Codes Correcting
limited-shift errors in racetrack memories,” Proc. IEEE Int. Symp. on
Inform. Theory, 2018, pp. 96–100.

[3] Y. Chee, H. Kiah, A.Vardy, V. Vu and E. Yaakobi “Coding for racetrack
memories,” IEEE Transactions on Information Theory, 2018.

[4] Y. Chee, R. Gabrys, A. Vardy, and V. K. Vu, and E. Yaakobi, “Reconstruc-
tion from deletions in racetrack memories,” Proc. IEEE Inform. Theory
Workshop, 2018.

[5] M. Hayashi, L. Thomas, R. Moriya, C. Rettner and S. S. Parkin, “Current-
controlled magnetic domain-wall nanowire shift register,” in Science,
vol. 320, no. 5873, 2008, pp. 209–211.

[6] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966,
pp. 707–710.

[7] V. I. Levenshtein, “Reconstructing objects from a minimal number of
distorted patterns,” (in Russian), Dokl. Acad. Nauk 354 pp. 593-596;
English translation, Doklady Mathematics, vol. 55 pp. 417420, 1997.

[8] S. S. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall
racetrack memory,” in Science, vol. 320, no. 5873, 2008, pp. 190–194.

[9] Z. Sun, W. Wu and H. Li, “Cross-layer racetrack memory design for
ultra high density and low power consumption,” in Design Automation
Conference (DAC), 2013 50th ACM/EDAC/IEEE, 2013, pp. 1–6.

[10] A. Vahid, G. Mappouras, D. J. Sorin and R. Calderbank, “Correcting
Two Deletions and Insertions in Racetrack Memory.” arXiv preprint
arXiv:1701.06478, 2017.

[11] C. Zhang, G. Sun, X. Zhang, W. Zhang, W. Zhao, T. Wang, Y. Liang,
Y. Liu, Y. Wang and J. Shu, “Hi-fi playback: Tolerating position errors
in shift operations of racetrack memory,” in ACM SIGARCH Computer
Architecture News, vol. 43, no. 3, 2015, pp. 694–706.


