
IEEE TRANSACTIONS ON INFORMATION THEORY 1

On Optimal k-Deletion Correcting Codes
Jin Sima and Jehoshua Bruck, Fellow, IEEE

Abstract—Levenshtein introduced the problem of constructing
k-deletion correcting codes in 1966, proved that the optimal
redundancy of those codes is O(k logN) for constant k, and
proposed an optimal redundancy single-deletion correcting code
(using the so-called VT construction). However, the problem
of constructing optimal redundancy k-deletion correcting codes
remained open. Our key contribution is a major step towards
a complete solution to this longstanding open problem for
constant k. We present a k-deletion correcting code that has
redundancy 8k logN + o(logN) when k = o(

√
log logN) and

encoding/decoding algorithms of complexity O(N2k+1).

Index Terms—Deletion codes, Varshamov-Tenengoltz code.

I. INTRODUCTION

A set of binary vectors of length N is a k-deletion cor-
recting code (denoted by C) iff any two vectors in C do
not share a subsequence of length N − k. The problem of
constructing a k-deletion correcting code was introduced by
Levenshtein [1]. He proved that the optimal redundancy (de-
fined as N−log |C|) is O(k logN) for constant k. Specifically,
it is in the range k logN + o(logN) to 2k logN + o(logN)
when k is a constant. In general, the redundancy O(k logN)
is orderwise optimal when k ≤ O(N ε) for some ε < 1. The
optimal redundancy becomes O(k log(N/k)) when k = O(N)
and k is small, e.g., k = n/4 [9]. When k ≥ n/2, a k-deletion
correcting code has cardinality at most two. In addition,
Levenshtein proposed the following optimal construction (the
well-known Varshamov-Tenengolts (VT) code [2]):{

(c1, . . . , cN ) :

N∑
i=1

ici ≡ 0 mod (N + 1)

}
, (1)

that is capable of correcting a single deletion with redun-
dancy not more than log(N + 1) [1]. The encoding/decoding
complexity of VT codes is linear in N . Generalizing the
VT construction to correct more than a single deletion was
elusive for more than 50 years. In particular, the past ap-
proaches [4], [5], [6] result in asymptotic code rates that are
bounded away from 1.

A recent breakthrough paper [7] proposed a k-deletion cor-
recting code construction with O(k2 log k logN) redundancy
and Ok(N log4N)1 encoding/decoding complexity, where k
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1The notion Ok denotes parameterized complexity, i.e., Ok(N log4 N) =
f(k)O(N log4 N) for some function f .

is a constant. For the case k = 2 deletions, the redundancy
was improved in [12], [13]. Specifically, the code in [13]
has redundancy of 7 logN and linear encoding/decoding com-
plexity. The work in [14] considered correction with high
probability and proposed a k-deletion correcting code con-
struction with redundancy (k + 1)(2k + 1) logN + o(logN)
and encoding/decoding complexity O(Nk+1/ logk−1N). The
result for this randomized coding setting was improved in [8],
where redundancy O(k log(N/k)) and complexity poly(N, k)
were achieved. However, finding a deterministic k-deletion
correcting code construction that achieves the optimal order
redundancy O(k logN) remained elusive.

Our key contribution is a solution to this longstanding open
problem for constant k: We present a code construction that
achieves O(k logN) redundancy when k = o(

√
log logN)

and O(N2k+1) encoding/decoding computational complexity.
Note that the complexity is polynomial in N when k is a
constant. The following theorem summarizes our main result.
We note that in this paper, the optimality of the code is
redundancy-wise rather than cardinality-wise, namely, the fo-
cus is on the asymptotic rather than exact size of the code. The
problem of finding optimal cardinality k-deletion correcting
code appears highly nontrivial even for k = 1.

Theorem 1. Let k and n be two integers satisfying k =
o(
√
log log n). For integer N = n+8k log n+ o(log n), there

exists an encoding function E : {0, 1}n → {0, 1}N , computed
in O(n2k+1) time, and a decoding function D : {0, 1}N−k →
{0, 1}n, computed in O(nk+1) = O(Nk+1) time, such that
for any c ∈ {0, 1}n and subsequence d ∈ {0, 1}N−k of E(c),
we have that D(d) = c.

Recently, an independent work [9] proposed a k-deletion
correcting code with O(k logN) redundancy and better com-
plexity of poly(N, k). In contrast to a redundancy of 8k logN
in this paper, the redundancy in [9] only specified asymptoti-
cally, and it is estimated to be at least 200k log n. Moreover,
the techniques in [9] and this paper are different.

Here are the key building blocks in our code construction: (i)
generalizing the VT construction to k deletions by considering
constrained sequences, (ii) separating the encoded vector to
blocks and using concatenated codes and (iii) a novel strategy
to separate the vector to blocks by a single pattern. The
following gives a more specific description of these ideas.

In our previous work for 2-deletions codes [13], we gener-
alized the VT construction. In particular, we proved that while
the higher order parity checks

∑N
i=1 i

jci mod (N j + 1), j =
0, 1, . . . , t do not work in general, those parity checks work
in the two deletions case when the sequences are constrained
to have no consecutive 1’s. In this paper we generalize this
idea, specifically, the higher order parity checks can be used
to correct k = t/2 deletions in sequences that satisfy the
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following constraint: The index distance between any two
1’s is at least k, i.e., there is a 0 run of length at least k − 1
between any two 1’s.

The fact that we can correct k deletions using the generaliza-
tion of the VT construction on constrained sequences, enables
a concatenated code construction, which is the underlying
structure of our k-deletion correcting codes. In concatenated
codes, each codeword c is split into blocks of small length,
by certain markers at the boundaries between adjacent blocks.
Each block is protected by an inner deletion code that can
be efficiently computed when the block length is small. The
block boundary markers are chosen such that k deletions in a
codeword result in at most O(k) block errors. Then, it suffices
to use an outer code, such as a Reed-Solomon code, to correct
the block errors.

Concatenated codes were used in a number of k-deletion
correcting code constructions, [7], [11], [10]. One of the
main differences among these constructions is the choice
of the block boundary markers that separate the codewords.
The constructions in [10], [11] insert extra bits as markers
between blocks, which introduces O(N) bits of redundancy.
In [7], occurrences of short subsequences in the codeword,
called patterns, were used as markers. The construction in
[7] requires O(k log k) different patterns where each pattern
introduces O(k logN) bits of redundancy.

We improve the redundancy in [7] by using a single type of
pattern for block boundary markers. Specifically, we choose a
pattern such that its indicator vector, a binary vector in which
the 1 entries indicate the occurrences of the pattern in c, is
a constrained sequence that is immune to deletions. Then,
the generalized VT construction can be used to protect the
indicator vector and thus the locations of the block boundary
markers. Knowing the boundary between blocks, we can
recover the blocks with at most 2k block errors, which then can
be corrected using a combination of short deletion correcting
codes and Reed-Solomon codes.

The concatenated code construction consists of short blocks,
hence, the pattern has to occur frequently in the codeword
such that every consecutive bits of certain length contains at
least one occurrence of the pattern. Namely, the first step of
the encoding is a mapping of an arbitrary binary sequence to
a sequence with frequent synchronization patterns. The con-
structions in [7], [9] compute such mappings using randomized
algorithms. In this paper, we provide a deterministic algorithm
to generate sequences with frequent synchronization patterns.

We now formally define the synchronization pattern and its
indicator vector.

Definition 1. A synchronization pattern, is a length 3k +
dlog ke+ 4 sequence a = (a1, . . . , a3k+dlog ke+4) satisfying

• a3k+i = 1 for i ∈ [0, dlog ke+4], where [0, dlog ke+4] =
{0, . . . , dlog ke+ 4}.

• There does not exist a j ∈ [1, 3k−1], such that aj+i = 1
for i ∈ [0, dlog ke+ 4].

Namely, a synchronization pattern is a length 3k+dlog ke+4
sequence that ends with dlog ke + 5 consecutive 1’s and no
other 1-run with length dlog ke+ 5 exists.

For a sequence c = (c1, . . . , cn), the indicator vector of
the synchronization pattern, referred to as synchronization
vector 1sync(c) ∈ {0, 1}n, is defined by

1sync(c)i =


1, if (ci−3k+1, ci−3k+2, . . . , ci+dlog ke+4)

is a synchronization pattern,
0, else.

(2)

Note that 1sync(c)i = 0 for i ∈ [1, 3k − 1] and for i ∈ [n −
dlog ke−3, n]. The entry 1sync(c) = 1 if and only if ci is the
first bit of the final 1 run in a synchronization pattern. It can be
seen from the definition that any two 1 entries in 1sync(c) have
index distance at least 3k, i.e., any two 1 entries are separated
by a 0-run of length at least 3k − 1. Hence, 1sync(c) is a
constrained sequence described above.

Example 1. Let integers k = 2 and n = 35. Then the
sequence (1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1) is a synchronization pat-
tern. Let the length n sequence

c = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,

1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1).

Then the synchronization vector 1sync(c) is given by

1sync(c) = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0).

Next, we present the definition of the generalized VT code.
Define the integer vectors

m(e) , (1e, 1e + 2e, . . . ,

n∑
j=1

je) (3)

for e ∈ [0, 6k], where the i-th entry m
(e)
i of m(e) is the

sum of the e-th powers of the first i positive integers. Given
a sequence c ∈ {0, 1}n, we compute the generalized VT
redundancy f(c) of dimension 6k + 1 as follows:

f(c)e , c ·m(e) mod 3kne+1

=

n∑
i=1

cim
(e)
i mod 3kne+1, (4)

for e ∈ [0, 6k], where f(c)e is the e-th component of f(c)
and · denotes inner product over integers. Our generalization
of the VT code construction shows that the vector f(1sync(c))
helps protect the synchronization vector 1sync(c) from k
deletions in c.

The rest of the paper is organized as follows. Section II
provides an outline of our construction and some of the basic
lemmas. Based on results of the basic lemmas, Section III
presents the encoding and decoding procedures of our code.
Section IV presents our VT generalization for recovering the
synchronization vector. Section V explains how to correct k
deletions based on the synchronization vector, when the syn-
chronization patterns appear frequently. Section VI describes
an algorithm to transform a sequence into one with frequently
occurred synchronization patterns. Section VII concludes the
paper.
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II. OUTLINE AND PRELIMINARIES

In this section, we outline the ingredients that constitute
our code construction and present notations that will be
used throughout the paper. A summary of these notations
is provided in Table I. We begin with an overview of the
code construction, which has a concatenated code structure as
described in Section I. In our construction, each codeword c
is splitted into blocks, with the boundaries between adja-
cent blocks given by synchronization patterns. Specifically,
let t1, . . . , tJ be the indices of the synchronization patterns
in c, i.e., the indices of the 1 entries in 1sync(c). Then the
blocks are given by (ctj−1+1, . . . , ctj−1) for j ∈ [0, J + 1],
where tj = 0 if j = 0 and tj = n+ 1 if j = J + 1. The key
idea of our construction is to use the VT generalization f
(see Eq. (4) for definition) as parity checks to protect the
synchronization vector 1c, and thus identify the indices of
block boundaries. The proof details will be given in Lemma 1.
Note that the parity f(c) in (4) has size O(k2 log n). To
compress the size of f(c) to the targeted O(k log n), in
Lemma 2 we apply a modulo operation on the function f .
Given the block boundaries, Lemma 3 provides an algorithm

TABLE I
SUMMARY OF NOTATIONS

Bk(c) , The set of sequences that share a length n− k
subsequence with c ∈ {0, 1}n.

Rm , The set of sequences where any two 1 entries are
separated by at least m− 1 zeros.

1sync(c) , Synchronization vector defined in (2).
m(e) , Weights of order e in the VT generalization, defined

in (3).
f(c) , Generalized VT redundancy defined in (4).

L , Maximal length of zero runs in the synchronization
vector of a k-dense sequence, defined in (5)

p(c) , The function used to compute the redundancy
protecting the synchronization vector 1sync(c),
defined in Lemma 2.

Hashk(c) , The deletion correcting hash function for k-dense
sequences, defined in Lemma 3.

T (c) , The function that generates k-dense sequences,
defined in Lemma 4.

H(c) , Deletion correcting hash function for any sequence,
defined in Lemma 5.

to protect the codewords. Specifically, we show that given
the synchronization vector 1sync(c), it is possible to recover
most of the blocks in c, with up to 2k block errors. These
block errors can be corrected with the help of their deletion
correcting hashes, which can be exhaustively computed and
will be presented in Lemma 5. Hence, to correct the block
errors, it suffices to protect the sequence of deletion correcting
hashes using, for example, Reed-Solomon codes.

Lemma 2 and Lemma 3 together define a hash function that
protects c from k deletions. However, in order to exhaustively
compute the block hash given in Lemma 5 and obtain the
desired size of the redundancy, the block length has to be
of order O(poly(k) log n). Hence the synchronization pattern
must appear frequently enough in c. Such sequence c will be
defined in the following as a k-dense sequence. To encode for

any given sequence c ∈ {0, 1}n, in Lemma 4 we present an in-
vertible mapping that takes any sequence c ∈ {0, 1}n as input
and outputs a k-dense sequence. Then, any binary sequence
can be encoded into a k-dense sequence and protected.

Finally, the hash function defined by Lemma 2 and
Lemma 3 is subject to deletion errors and has to be protected.
To this end, we use an additional hash that encodes the deletion
correcting hash of the hash function defined in Lemma 2 and
Lemma 3. The additional hash is protected by a (k + 1)-fold
repetition code. Similar additional hash technique was also
given in [7]. The final encoding/decoding algorithm of our
code, which combines the results in Lemma 2, Lemma 3,
and Lemma 4, is provided in Section III. The encoding is
illustrated in Fig. 1.

Before presenting the lemmas, we give necessary defini-
tions and notations. For a sequence c ∈ {0, 1}n, define its
deletion ball Bk(c) as the collection of sequences that share
a length n− k subsequence with c.

Definition 2. A sequence c ∈ {0, 1}n is said to be k-dense if
the lengths of the 0 runs in 1sync(c) is at most

L ,(dlog ke+ 5)2dlog ke+9dlog ne
+ (3k + dlog ke+ 4)(dlog ne+ 9 + dlog ke). (5)

For k-dense c, the index distance between any two 1 entries
in 1sync(c) is at most L + 1, i.e., the 0-runs between two 1
entries have length at most L+ 1.

Note that f(c) is an integer vector that can be presented
by log(3k)6k+1n(3k+1)(6k+1) bits or by an integer in the
range [0, (3k)6k+1n(3k+1)(6k+1) − 1]. In this paper, we in-
terchangeably use f(c) to denote its binary presentation or
integer presentation.

The following lemma shows that the synchronization vec-
tor 1sync(c) can be recovered from k deletions with the help
of f(1sync(c)). Its proof will be given in Section IV-A.

Lemma 1. For integers n and k and sequences c, c′, if
c′ ∈ Bk(c) and f(1sync(c)) = f(1sync(c′)), then 1sync(c) =
1sync(c′).

By virtue of Lemma 1, the synchronization vector 1sync(c)
can be recovered from k deletions in c, with the help of a
hash f(1sync(c)) of size O(k2 log n) bits. To further reduce
the size of the hash to O(k log n) bits, we apply modulo
operations on f(1sync(c)) in the following lemma, the proof
of which will be proved in Section IV-B.

Lemma 2. For integers n and k = o(
√
log log n), there

exists a function p : {0, 1}n → [1, 22k logn+o(logn)], such
that if f(1sync(c)) ≡ f(1sync(c′)) mod p(c) for two se-
quences c ∈ {0, 1}n and c′ ∈ Bk(c), then 1sync(c) =
1sync(c′). Hence if

(f(1sync(c)) mod p(c), p(c))

=(f(1sync(c
′)) mod p(c′), p(c′))

and c′ ∈ Bk(c), we have that 1sync(c) = 1sync(c′).
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sequence c

Map c to T (c) (see Lemma 4 for definition of T )

k-dense
sequence T (c)

pattern
synchronization

00 . . . 011111

block 1

Append Redundancy 1 = (f(1sync(T (c))) mod p(c), p(c))

(See Lemma 2 for definitions of f and p)

pattern
synchronization

01 . . . 011111

. . . block J

protecting 1sync(c) 01 . . . 01111100 . . . 011111 Redundancy 1

Append Redundancy 2 = Hashk(c)

(See Lemma 3 for definition of Hashk)

protecting

blocks 1, . . . , J
01 . . . 01111100 . . . 011111 Redundancy 1 Redundancy 2

Append Redundancy 3 = (k + 1)-fold repetition
of H(Redundancy1,Redundancy2) (See Lemma 5 for definition of H)

protecting
Redundancy 1

and Redundancy 2
01 . . . 01111100 . . . 011111 Redundancy 1 Redundancy 2 Redundancy 3

Fig. 1. Illustrating the encoding procedure of our k-deletion correcting code construction, based on results of Lemma 2, Lemma 3, Lemma 4, and Lemma 5.
The indices of the bold 1 entries are the indices of the 1 entries in the synchronization vector 1sync(T (c)).

Lemma 2 presents a hash of size 4k log n+o(log n) bits for
correcting 1sync(c). With the knowledge of the synchroniza-
tion vector 1sync(c), the next lemma shows that the sequence c
can be further recovered using another 4k log+o(log n) bit
hash, when c is k-dense, i.e., when the synchronization patter
occurs frequently enough in c. The proof of Lemma 3 will be
given in Section V.

Lemma 3. For integers n and k = o(
√
log log n), there exists

a function Hashk : {0, 1}n → {0, 1}4k logn+o(logn), such
that every k-dense sequence c ∈ {0, 1}n can be recovered,
given its synchronization vector 1sync(c), its length n − k
subsequence d, and Hashk(c).

Combining Lemma 2 and Lemma 3, we obtain
size O(k log n) hash function to correct deletions for a k-dense
sequence. To encode for arbitrary sequence c ∈ {0, 1}n, a
mapping that transforms any sequence to a k-dense sequence
is given in the following lemma. The details will be given in
Section VI-B.

Lemma 4. For integers k and n > k, there exists a map T :
{0, 1}n → {0, 1}n+3k+3dlog ke+15, computable in poly(n, k)
time, such that T (c) is a k-dense sequence for c ∈ {0, 1}n.
Moreover, the sequence c can be recovered from T (c).

The next three lemmas (Lemma 5, Lemma 6, and Lemma 7)

present existence results that are necessary to prove Lemma 2
and Lemma 3. Lemma 5 gives a k-deletion correcting hash
function for short sequences, which is the block hash described
above in proving Lemma 3. It is an extension of the result
in [7]. Lemma 6 is a slight variation of the result in [1].
It shows the equivalence between correcting deletions and
correcting deletions and insertions. Lemma 6 will be used in
the proof of Lemma 1, where we need an upper bound on
the number of deletions/insertions in 1sync(c) caused by a
deletion in c. Lemma 7 (see [15]) gives an upper bound on
the number of divisors of a positive integer n. With Lemma 7,
we show that the VT generalization in Lemma 1 can be
compressed by taking modulo operations. The details will be
given in the proof of Lemma 2.

Lemma 5. For any integers w, n, and k, there exists a hash
function H : {0, 1}w →
{0, 1}d(w/dlogne)e(2k log logn+O(1)), computable
in Ok((w/ log n)n log

2k n) time, such that any
sequence c ∈ {0, 1}w can be recovered from its length w− k
subsequence d and the hash H(c).

Proof. We first show by counting arguments the existence of
a hash function H ′ : {0, 1}dlogne → {0, 1}2k log logn+O(1),
exhaustively computable in Ok(n log

2k n) time, such that
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H ′(s) 6= H ′(s′) for all s ∈ {0, 1}dlogne and s′ ∈ Bk(s)\{s}.
The hash H ′(c′) protects the sequence s ∈ {0, 1}dlogne from k

deletions. Note that |Bk(c′)| ≤
(dlogne

k

)2
2k ≤ 2dlog ne2k.

Hence it suffices to use brute force and greedily assign
a hash value for each sequence s ∈ {0, 1}dlogne such
that H ′(s) 6= H ′(s′) for all s′ ∈ Bk(s)\{s}. Since the
size of Bk(s) is upper bounded by 2dlog ne2k, there always
exists such a hash H ′(s) ∈ {0, 1}log(2dlogne2k+1), that has
no conflict with the hash values of sequences in Bk(s). The
total complexity is Ok(n log

2k n) and the size of the hash
value H ′(s) is 2k log log n+O(1).

Now split c into d(w/dlog ne)e blocks c(i−1)dlogne+1,
. . . , cidlogne, i ∈ [1, d(w/dlog ne)e] of length dlog ne. If the
length of the last block is less than dlog ne, add zeros to
the end of the last block such that its length is dlog ne.
Assign a hash value hi = H ′((c(i−1)dlogne+1, . . . , cidlogne)),
i ∈ [1, d(w/dlog ne)e] for each block. Let H(c) =
(h1, . . . ,hd(w/dlogne)e) be the concatenation of hi for i ∈
[1, d(w/dlog ne)e].

We show that H(c) protects c from k deletions.
Let d be a length n − k subsequence of c. Note
that d(i−1)dlogne+1 and didlogne−k come from bits
c(i−1)dlogne+1+x and cidlogne−k+y respectively after
deletions in c, where the integers x, y ∈ [0, k]. There-
fore, (d(i−1)dlogne+1, . . . , didlogne−k) is a length dlog ne − k
subsequence of (c(i−1)dlogne+1+x, . . . , cidlogne−k+y), and
thus a subsequence of the block (c(i−1)dlogne+1, . . . , cidlogne).
Hence the i-th block (c(i−1)dlogne+1, . . . , cidlogne) can be
recovered from hi = H ′(c(i−1)dlogne+1, . . . , cidlogne)
and (d(i−1)dlogne+1, . . . , didlogne−k). Therefore, c can
be recovered given d and H(c). The length of H(c)
is d(w/dlog ne)e(2k log log n + O(1)) and the complexity
of H(c) is Ok((w/ log n)n log2k n).

Lemma 6. Let r, s, and k be integers satisfying r + s ≤ k.
For sequences c, c′ ∈ {0, 1}n, if c′ and c share a common
resulting sequence after r deletions and s insertions in both,
then c′ ∈ Bk(c).

Lemma 7. For a positive integer n ≥ 3, the number of divisors
of n is upper bounded by 21.6 lnn/(ln lnn).

The proofs of Lemma 1, Lemma 2, Lemma 3, and Lemma 4
rely on several propositions, the details of which will be
presented in the next sections. For convenience, a dependency
graph for the theorem, lemmas and propositions is given in
Fig. 2.

III. PROOF OF THEOREM 1

Based on the lemmas stated in Section II, in this section we
present the encoding function E and the decoding function D
of our k-deletion correcting code, and prove Theorem 1. Given
any sequence c ∈ {0, 1}n, let the function E : {0, 1}n →
{0, 1}n+8k logn+o(logn) be given by

E(c) = (T (c), R′(c), R′′(c)),

where

R′(c) =(f(1sync(T (c))) mod p(T (c)),

p(T (c)), Hashk(T (c))), and
R′′(c) =Repk+1(H(R′(c))).

Function Repk+1(H(R′(c))) is the (k + 1)-fold repetition
of the bits in H(R′(c)), where function H(R′(c)) is defined
Lemma 5 and protects R′(c) from k deletions. Function T (c)
is defined in Lemma 4 and transforms c into a k-dense se-
quence (see Definition 2 for definition of a k-dense sequence).
Function f(1sync(T (c))) in R′(c) is represented by an integer
and protects the synchronization vector 1sync(c) by Lemma 1.
Function p(T (c)) is defined in Lemma 2, which compresses
the hash f(1sync(T (c))). Function Hashk(T (c)) is defined
in Lemma 3 and protects a k-dense sequence from k deletions.

Note that k = o(
√
log log n). Hence, according to Lemma

2, Lemma 3, and Lemma 4, the length of R′(c) is N1 =
8k log(n+ 3k + 3dlog ke+ 15) + o(log(n+ 3k + 3dlog ke+
15)) = 8k log n + o(log n). The length of R′′(c) is N2 =
2k(k + 1)(N1/dlog ne) log log n = o(log n). The length
of T (c) is n+N0 = n+ 3k + 3dlog ke+ 15. Therefore, the
length of E(c) is n+N0+N1+N2 = n+8k log n+o(log n).
The redundancy of the code is 8k log n+ o(log n).

To show how the sequence c can be recovered from a
length N − k subsequence d of E(c) and implement the
computation of the decoding function D(d), we prove that

1) Statement 1: The redundancy R′(c) can be recovered
given (dn+N0+N1+1, . . . , dn+N0+N1+N2−k).

2) Statement 2: The sequence c can be recovered
given (d1, . . . , dn+N0−k) and R′(c).

We first prove Statement 1. Note that dn++N0+N1+1

and dn+N0+N1+N2−k come from bits E(c)n+N0+N1+1+x

and E(c)n+N0+N1+N2−k+y respectively after deletions
in E(c), where x, y ∈ [0, k]. Hence (dn+N0+N1+1, . . . ,
dn+N0+N1+N2−k) is a length N2 − k subsequence
of (E(c)n+N0+N1+1+x, . . . , E(c)n+N0+N1+N2−k+y),
and thus a subsequence of (E(c)n+N0+N1+1,
. . . , E(c)n+N0+N1+N2

) = R′′(c). Since R′′(c) is k + 1-fold
repetition code and thus a k-deletion correcting code that
protects H(R′(c)), the hash function H(R′(c)) can be
recovered from (dn+N0+N1+1, . . . , dn+N0+N1+N2−k).

Similarly, (dn+N0+1, . . . , dn+N0+N1−k) is a length N1−k
subsequence of (E(c)n+N0+1, . . . , E(c)n+N0+N1

) = R′(c).
From Lemma 5, the function R′(c) can be recovered
from H(R′(c)) and (dn+N0+1, . . . , dn+N0+N1−k). Hence
Statement 1 holds.

We now prove Statement 2. Note that R′(c) contains
hashes (f(1sync(T (c))) mod p(T (c)), p(T (c))) and
Hashk(T (c)). Moreover, (d1, . . . , dn+N0−k) is a
length n+N0 − k subsequence of (E(c)1, . . . , E(c)n+N0) =
T (c). According to Lemma 2, the synchronization
vector 1sync(T (c)) can be recovered from hash
(f(1sync(T (c))) mod p(T (c)), p(T (c))) and (d1, . . . ,
dn+N0−k), by exhaustively searching over all length
n + N0 supersequence c′ of (d1, . . . , dn+N0−k) such
that f(1sync(c′)) = f(1sync(T (c))). Then we have that
1sync(T (c)) = 1 + sync(c′). Since by Lemma 4, T (c)
is a k-dense sequence, by Lemma 3, it can be recovered
from 1sync(T (c)), Hashk(T (c)), and the length n+N0 − k
subsequence (d1, . . . , dn+N0−k) of T (c). Finally, the



6 IEEE TRANSACTIONS ON INFORMATION THEORY

Lemma 6

Prop. 1 Prop. 2

Lemma 1 Lemma 7 Lemma 5 Prop. 3 Prop. 5 Prop. 6

Lemma 2 Lemma 3 Lemma 4

Thm. 1

Fig. 2. Dependencies of the claims in the paper.

sequence c can be recovered from T (c) by Lemma 4. Hence
Statement 2 holds and c can be recovered.

The encoding complexity of E(c) is O(n2k+1), which
comes from brute force search for integer p(T (c)).
The decoding compliexity is O(nk + 1), which comes
from brute force search for the correct 1sync(T (c)),
given f(1sync(T (c))) mod p(T (c)) and p(T (c)).

IV. PROTECTING THE SYNCHRONIZATION VECTORS

In this section we present a hash function with
size 4k log n + o(log n) to protect the synchronization vec-
tor 1sync(c) from k deletions in c and prove Lemma 2. We
first prove Lemma 1, which is decomposed to Proposition 1
and Proposition 2. In Proposition 1 we present an upper bound
on the radius of the deletion ball for the synchronization vector.
In Proposition 2, we prove that the higher order parity check
helps correct multiple deletions for sequences in which the
there is a 0-run of length at least 3k− 1 between any two 1’s.
Since 1sync(c) is such a sequence, we conclude that the higher
order parity check helps recover 1sync(c). After obtaining a
bound on the difference between the higher order parity checks
of two ambiguous sequence, we then apply Proposition 2 on
the synchronization vector 1sync(c) to prove Lemma 1, which
replaces the higher order parity checks in Proposition 2 by
the higher parity checks modulo a numbers. After proving
Lemma 1, we use Lemma 7 to further compress the size of
the higher order parity check that protects 1sync(c) and then
prove Lemma 2.

Proposition 1. For c, c′ ∈ {0, 1}n, if c′ ∈ Bk(c),
then 1sync(c′) ∈ B3k(1sync(c)).

Proof. Since c′ ∈ Bk(c), the sequences c′ and c share
a common subsequence after k deletions in both. We now
show that a single deletion in c causes at most two deletions
and one insertion in its synchronization vector 1sync(c). We
first show that a deletion in c can destroy and generate

at most 1 synchronization pattern. This is because for any
synchronization pattern that is destroyed or generated, there
must be a deletion that occurs within the synchronization
pattern. Hence any two destroyed or generated synchronization
patterns cannot be caused by the same deletion. Therefore, we
need to consider four cases in total. Let d′ be the subsequence
of c after a single deletion.

1) The deletion destroys a synchronization
pattern (ci+1, . . . , ci+3k+dlog ke+4) for some i and
no synchronization pattern is generated. Then the
sequence 1sync(d′) can be obtained by deleting the 1
entry 1sync(c)i+3k in 1sync(c).

2) The deletion generates a new synchronization
pattern (c′i′+1, . . . , c

′
i′+3k+dlog ke+4) for

some i′ and destroys a synchronization
pattern (ci+1, . . . , ci+3k+dlog ke+4). The
sequence 1sync(d′) can be obtained by deleting the 1
entry 1sync(c)i+3k and the 0 entry 1sync(c)i+3k−1
in 1sync(c) and inserting a 1 entry at 1sync(c)i′+3k.

3) The deletion generates a new synchronization pat-
tern (c′i′+1, . . . , c

′
i′+3k+dlog ke+4) for some i′ and no syn-

chronization pattern is destroyed. Then the 1sync(d′)
can be obtained by deleting two 0 entries 1sync(c)i′+3k

and 1sync(c)i′+3k+1 in 1sync(c) and inserting a 1 entry
at 1sync(c)i′+3k.

4) No synchronization pattern is generated or destroyed.
Then 1sync(d′) can be obtained by deleting a 0 en-
try 1sync(c)j , where j is the location of the deletion.

In summary, in each of the above cases, a single deletion in c
causes at most two deletions and one insertion in 1sync(c).
Hence k deletions in c and c′ cause at most 2k deletions and k
insertions in 1sync(c) and 1sync(c′) respectively. According to
Lemma 6, we have that 1sync(c′) ∈ B3k(1sync(c)) when c′ ∈
Bk(c). Hence, Proposition 1 is proved.

Let Rm be the set of length n sequences in which there
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is a 0 run of length at least m − 1 between any two 1’s.
Any two 1’s in a sequence c ∈ Rm have index distance at
least m. The following lemma shows that the sequences inR3k

can be protected using higher order parity checks. Note that
compared to the higher order parity checks f(c), the higher
order parity checks in the following proposition do not have
modulo operations.

Proposition 2. For sequences c, c′ ∈ R3k, if c′ ∈ B3k(c)
and c ·m(e) = c′ ·m(e) for e ∈ [0, 6k], then c = c′.

Proof. We first compute the difference c ·m(e)−c′ ·m(e), e ∈
[0, 6k]. Since c′ ∈ B3k(c), there exist two subsets δ =
{δ1, . . . , δ3k} ⊂ [1, n] and δ′ = {δ′1, . . . , δ′3k} ⊂ [1, n]
such that deleting bits with indices δ and δ′ respectively
from c and c′ results in the same length n− 3k subsequence,
i.e., (ci : i /∈ δ) = (c′i : i /∈ δ′). Let ∆ = {i : ci = 1}
and ∆′ = {i : c′i = 1} be the indices of 1 entries in c and c′

respectively. Let S1 = ∆ ∩ δ be the indices of 1 entries that
are deleted in c. Then Sc1 = ∆∩([1, n]\δ) denotes the indices
of 1 entries that are not deleted. Similarly, let S2 = ∆′ ∩ δ′
and Sc2 = ∆′ ∩ ([1, n]\δ′) be the indices of 1 entries that are
deleted and not in c′ respectively. Let the elements in δ ∪ δ′
be ordered by 1 ≤ p1 ≤ p2 ≤ . . . ≤ p6k ≤ n. Denote p0 = 0
and p6k+1 = n. Then we have that

c ·m(e) − c′ ·m(e)

=
∑
`∈∆

m
(e)
` −

∑
`∈∆′

m
(e)
`

=
∑
`∈∆

(
∑̀
i=1

ie)−
∑
`∈∆′

(
∑̀
i=1

ie)

=

n∑
i=1

(
∑

`∈∆∩[i,n]

ie)−
n∑
i=1

(
∑

`∈∆′∩[i,n]

ie)

=

n∑
i=1

(|∆ ∩ [i, n]| − |∆′ ∩ [i, n]|)ie

=

n∑
i=1

(|S1 ∩ [i, n]|+ |Sc1 ∩ [i, n]| − |S2 ∩ [i, n]|

− |Sc2 ∩ [i, n]|)ie

=

6k∑
j=0

pj+1∑
i=pj+1

(|S1 ∩ [i, n]| − |S2 ∩ [i, n]|+ |Sc1 ∩ [i, n]|

− |Sc2 ∩ [i, n]|)ie

(a)
=

6k∑
j=0

pj+1∑
i=pj+1

(|S1 ∩ [pj+1, n]|

− |S2 ∩ [pj+1, n]|+ |Sc1 ∩ [i, n]| − |Sc2 ∩ [i, n]|)ie, (6)

where (a) holds since by definition of pj , there is no deleted 1
entry in interval (pj , pj+1) = {pj + 1, . . . , pj+1 − 1}, j ∈
[0, 6k]. In the following we show

Statement 1: −1 ≤ |Sc1 ∩ [i, n]| − |Sc2 ∩ [i, n]| ≤ 1
for i ∈ [1, n].
Statement 2: For each interval (pj , pj+1] = {pj +
1, . . . , pj+1}, j = 0, . . . , 6k, we have either |Sc1 ∩
[i, n]| − |Sc2 ∩ [i, n]| ≤ 0 for all i ∈ (pj , pj+1] or
|Sc1 ∩ [i, n]| − |Sc2 ∩ [i, n]| ≥ 0 for all i ∈ (pj , pj+1].

We first prove Statement 1. Note that deleting bits with
indices δ in c and deleting bits with indices δ′ in c′ result
in the same subsequence. Hence, for every i ∈ Sc1, there is
a unique corresponding index i′ ∈ Sc2 such that the two 1
entries ci and c′i′ end in the same location after deletions,
i.e., i − |δ ∩ [1, i − 1]| = i′ − |δ′ ∩ [1, i′ − 1]|. This implies
that |i′ − i| ≤ 3k. Fix integers i and i′. Then by definition
of i and i′, for every x ∈ Sc1 ∩ [i + 1, n], there is a unique
corresponding y ∈ Sc2∩[i′+1, n] such that the two 1 entries cx
and c′y end in the same location after deletions. Therefore,
we have that |Sc1 ∩ [i + 1, n]| = |Sc2 ∩ [i′ + 1, n]|, and thus
that |Sc1 ∩ [i, n]| = |Sc2 ∩ [i′, n]|. If i′ ≥ i, then

|Sc1 ∩ [i, n]| − |Sc2 ∩ [i, n]|
=|Sc1 ∩ [i, n]| − |Sc2 ∩ [i′, n]| − |Sc2 ∩ [i, i′ − 1]|
=− |Sc2 ∩ [i, i′ − 1]|
(a)

≥ − |Sc2 ∩ [i, i+ 3k − 1]|
(b)

≥ − 1,

where (a) follows from the fact that i′ ≤ i+3k and (b) follows
from the fact that c, c′ ∈ R3k. Also we have that |Sc1∩[i, n]|−
|Sc2 ∩ [i, n]| = −|Sc2 ∩ [i, i′ − 1]| ≤ 0. Hence when i′ ≤ i, we
have that −1 ≤ |Sc1 ∩ [i, n]| − |Sc2 ∩ [i, n]| ≤ 0. Similarly,
when i′ < i, we have that

|Sc1 ∩ [i, n]| − |Sc2 ∩ [i, n]|
=|Sc1 ∩ [i, n]| − |Sc2 ∩ [i′, n]|+ |Sc2 ∩ [i′, i− 1]|
=|Sc2 ∩ [i′, i− 1]|
≤|Sc2 ∩ [i′, i′ + 3k − 1]|
≤1,

and that |Sc1 ∩ [i, n]| − |Sc2 ∩ [i, n]| = |Sc2 ∩ [i′, i − 1]| ≥ 0.
Therefore, we have that 0 ≤ |Sc1 ∩ [i, n]| − |Sc2 ∩ [i, n]| ≤ 1
when i′ < i. Thus Statement 1 is proved.

We now prove Statement 2 by contradiction. Suppose on
the contrary, there exist i1, i2 ∈ (pj , pj+1] such that i1 < i2
and

(|Sc1 ∩ [i1, n]| − |Sc2 ∩ [i1, n]|)(|Sc1 ∩ [i2, n]| − |Sc2 ∩ [i2, n]|)
< 0

From Statement 1 we have that |Sc1∩ [i1, n]|− |Sc2∩ [i1, n]| ∈
[−1, 1] and that |Sc1 ∩ [i2, n]| − |Sc2 ∩ [i2, n]| ∈ [−1, 1]. Hence
by symmetry it can be assumed that |Sc1 ∩ [i1, n]| − |Sc2 ∩
[i1, n]| = −1 and |Sc1 ∩ [i2, n]| − |Sc2 ∩ [i2, n]| = 1. As shown
in proof of Statement 1, for every element i ∈ Sc1, there is a
corresponding element i′ ∈ Sc2 such that the two 1 entries ci
and c′i′ end in the same location after deletions. Hence, for
y = mini∈Sc

2∩[i1,n] i, there exists an integer x ∈ Sc1 such that
the two 1 entries cx and c′y are in the same location after
deletions, i.e., x − |δ ∩ [1, x − 1]| = y − |δ′ ∩ [1, y − 1]|.
Since |Sc1 ∩ [i1, n]| − |Sc2 ∩ [i1, n]| = −1, we have that x ∈
Sc1 ∩ [1, i1 − 1]. Otherwise, we have that x ∈ Sc1 ∩ [i1, n] and
for every integer i′ ∈ Sc2 ∩ (y, n], there exists an integer i ∈
Sc1∩(x, n] such that ci and ci′ end up in the same location after
deletions. This implies that |Sc1 ∩ [i1, n]| − |Sc2 ∩ [i1, n]| ≥ 0,
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contradicting the fact that |Sc1 ∩ [i1, n]| − |Sc2 ∩ [i1, n]| = −1.
Therefore,

i1 − |δ ∩ [1, i1 − 1]| >i1 − 1− |δ ∩ [1, i1 − 1]|
≥x− |δ ∩ [1, x− 1]|
=y − |δ′ ∩ [1, y − 1]|
≥i1 − |δ′ ∩ [1, i1 − 1]|,

which implies that

|δ ∩ [1, i1 − 1]| < |δ′ ∩ [1, i1 − 1]|. (7)

Similarly, from |Sc1 ∩ [i2, n]| − |Sc2 ∩ [i2, n]| = 1 we have that

|δ ∩ [1, i2 − 1]| > |δ′ ∩ [1, i2 − 1]|. (8)

Eq. (7) and Eq. (8) implies that

|δ ∩ [1, i2 − 1]| − |δ ∩ [1, i1 − 1]|
≥|δ′ ∩ [1, i2 − 1]|+ 1− |δ′ ∩ [1, i1 − 1]|+ 1

≥2. (9)

However, since i1, i2 ∈ (pj , pj+1] and no deletion occurs in
the interval (pj , pj+1], we have that |δ∩[1, i1]| = |δ∩[1, i2−1]|
and |δ′ ∩ [1, i1]| = |δ′ ∩ [1, i2 − 1]|, which implies that

|δ ∩ [1, i2 − 1]| − |δ ∩ [1, i1 − 1]|
≤|δ ∩ [1, i2 − 1]| − |δ ∩ [1, i1]|+ 1

=1,

contradicting Eq. (9). Hence there do not exist different
integers i1, i2 ∈ (pj , pj+1] such that

(|Sc1 ∩ [i1, n]| − |Sc2 ∩ [i1, n]|)(|Sc1 ∩ [i2, n]| − |Sc2 ∩ [i2, n]|)
< 0.

Hence Statement 2 is proved.
Now we continue to prove Proposition 2. Denote

si , |S1 ∩ [i, n]| − |S2 ∩ [i, n]|+ |Sc1 ∩ [i, n]| − |Sc2 ∩ [i, n]|.
(10)

Note that no deletion occurs in the interval (pj , pj+1], it
follows that

|S1 ∩ [i, n]| − |S2 ∩ [i, n]|
=|S1 ∩ [pj+1, n]| − |S2 ∩ [pj+1, n]| (11)

for i ∈ (pj , pj+1]. Combining (11) with Statement 1 and
Statement 2, we conclude that for each interval (pj , pj+1], j ∈
{0, . . . , 6k}, either si ≥ 0 for all i ∈ (pj , pj+1] or si ≤ 0 for
all i ∈ (pj , pj+1]. Let x = (x0, . . . , x6k) ∈ {−1, 1}6k+1 be a
vector defined by

xi =

{
−1, if sj < 0 for some j ∈ (pi, pi+1]

1, else.
.

Then from Eq. (6) and Eq. (10), the difference c ·m(e) − c′ ·
m(e) is given by

c ·m(e) − c′ ·m(e) =

6k∑
j=0

(

pj+1∑
i=pj+1

|si|ie)xj (12)

Let A be a 6k+1×6k+1 matrix with entries defined by Ae,j =∑pj
i=pj−1+1 |si|ie−1 for e, j ∈ [1, 6k+1]. If c·m(e) = c′ ·m(e)

for e ∈ [0, 6k], we have the following linear equation

Ax =


∑p1
i=p0+1 |si|i0 . . .

∑p6k+1

i=p6k+1 |si|i0
...

. . .
...∑p1

i=p0+1 |si|i6k . . .
∑p6k+1

i=p6k+1 |si|i6k


 x0...
x6k


=0, (13)

with a solution xi ∈ {−1, 1} for i ∈ [0, 6k]. We show that
this is impossible unless A is a zero matrix. Suppose on
the contrary that A is nonzero, let j1 < . . . < jQ be the
indices of all nonzero columns of A. Let A∗ be a submatrix
of A, obtained by choosing the intersection of the first Q rows
and columns with indices j1, . . . , jQ. Then taking the first Q
linear equations from the equation set (14) and noting that the
nonzero columns in A are the j1, . . . , jQ-th columns, we have
that

A∗x′

=


∑pj1
i=pj1−1+1 |si|i0 . . .

∑pjQ
i=pjQ−1

+1 |si|i0

...
. . .

...∑pj1
i=pj1−1+1 |si|iQ−1 . . .

∑pjQ
i=pjQ−1

+1 |si|iQ−1


xj1...
xjQ


=0 (14)

The determinant of A∗ is given by

det(A∗)

=det


∑pj1
i=pj1−1+1 |si|i0 . . .

∑pjQ
i=pjQ−1

+1 |si|i0

...
. . .

...∑pj1
i=pj1−1+1 |si|iQ−1 . . .

∑pjQ
i=pjQ−1

+1 |si|iQ−1


(a)
=

∑
i1∈(pj1−1,pj1 ],...,

iQ∈(pjQ−1,pjQ ]

det

 |si1 |i01 . . . |siQ |i0Q
...

. . .
...

|si1 |i
Q−1
1 . . . |siQ |i

Q−1
Q


(b)
=

∑
i1∈(pj1−1,pj1 ],...,

iQ∈(pjQ−1
,pjQ ]

[
Q∏
q=1

|siq |det

 i01 . . . i0Q
...

. . .
...

iQ−11 . . . iQ−1Q

]

(c)
=

∑
i1∈(pj1−1,pj1 ],...,

iQ∈(pjQ−1
,pjQ ]

[

Q∏
q=1

|siq |
∏

1≤m<`≤Q

(i` − im)], (15)

where equality (a) follows from the multi-linearity of the
determinant

det([v1 . . . avi + bv . . . vq])

=adet([v1 . . . vi . . . vq])

+ bdet([v1 . . . vi−1 v vi+1 . . . vq])

for any integers q and i and q-dimensional vectors v1, . . . ,vq,
v. Equality (b) follows from the linearity of the determinant

det([v1 . . . avi . . . vq]) = adet([v1 . . . vi . . . vq])
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for any integers q and i and q-dimensional vectors v1, . . . ,vq .
Equality (c) follows from the determinant of Vandermonde
matrix

det

 i01 . . . i0q
...

. . .
...

iq−11 . . . iq−1q

 =
∏

1≤m<`≤q

(i` − im)

for any integers q, i1, . . . , iq . . The determinant det(A∗)
is positive since i` > im for ` > m. and for i1 ∈
(pj1−1, pj1 ], . . . , iQ ∈ (pjQ−1, pjQ ]. Note that all the columns
of A∗ are nonzero. Therefore, the linear equation A∗x′ =
0 does not have nonzero solutions, contradicting the fact
that x′ = (xj1 , . . . , xjQ) ∈ {−1, 1}Q. Hence A is a zero
matrix, meaning that

|S1 ∩ [i, n]| − |S2 ∩ [i, n]|+ |Sc1 ∩ [i, n]| − |Sc2 ∩ [i, n]|
=|∆ ∩ [i, n]| − |∆′ ∩ [i, n]| = 0

for i ∈ {1, . . . , n}. This implies ∆ = ∆′ and thus c = c′.
Hence Proposition 2 is proved.

A. Proof of Lemma 1

We are now ready to prove Lemma 1, which states
that 1sync(c) = 1sync(c′) for sequences c and c′ ∈
Bk(c) satisfying f(1sync(c)) = f(1sync(c)). From Propo-
sition 1 we have that 1sync(c′) ∈ B3k(1sync(c)). Then,
it is not hard to see that (1sync(c′)i, . . . ,1sync(c′)n) ∈
B3k((1sync(c)i, . . . ,1sync(c)n)). This implies that ||∆ ∩
[i, n]| − |∆′ ∩ [i, n]|| ≤ 3k, where ∆ = {i : 1sync(c)i = 1}
and ∆′ = {i : 1sync(c′)i = 1}. According to the forth line in
Eq. (6), we have that

|1sync(c) ·m(e) − 1sync(c
′) ·m(e)|

=|
n∑
i=1

(|∆ ∩ [i, n]| − |∆′ ∩ [i, n]|)ie|,

≤
n∑
i=1

3kie

<3kne+1. (16)

If f(1sync(c)) = f(1sync(c′)), then

1sync(c) ·m(e) ≡ 1sync(c
′) ·m(e) mod 3kne+1 (17)

for e ∈ [0, 6k]. Equations (17) and (16) imply that 1sync(c) ·
m(e) = 1sync(c′) ·m(e) for e ∈ [0, 6k]. Since 1sync(c′) ∈
B3k(1sync(c)) and 1sync(c),1sync(c′) ∈ R3k, from Propo-
sition 2 we conclude that 1sync(c) = 1sync(c′). Hence
Lemma 1 is proved.

B. Proof of Lemma 2

Based on Lemma 1, we now show Lemma 2. Specifi-
cally, we show that there exists a function p : {0, 1}n →
[1, 22k logn+o(logn)] such that 1sync(c) = 1sync(c′) for se-
quences c and c′ ∈ Bk(c) satisfying (f(1sync(c)) mod
p(c), p(c)) = (f(1sync(c′)) mod p(c′), p(c′)).

Lemma 1 implies that f(1sync(c)) 6= f(1sync(c′))
for c′ ∈ Bk(c)\{c}, if 1sync(c) 6= 1sync(c′). Hence

|f(1sync(c)) − f(1sync(c′))| 6= 0 for c′ ∈ Bk(c)\{c},
where f(1sync(c)) and f(1sync(c′)) denote the integer
presentation of their vector form. The integers are in the
range [0, (3k)6k+1n(3k+1)(6k+1)−1]. According to Lemma 7,
the number of divisors of |f(1sync(c))−f(1sync(c′))| is upper
bounded by

22[(3k+1)(6k+1) lnn+(6k+1) ln 3k]/ ln((3k+1)(6k+1) lnn+(6k+1) ln 3k)

= 2o(logn),

where the equality holds since k = o(
√
log log n). For any

sequence c ∈ {0, 1}n, let

P(c) = {p : p divides |f(1sync(c′))− f(1sync(c))|
for some c′ ∈ Bk(c)\{c} such that 1sync(c) 6= 1sync(c

′)}

be the set of all divisors of the numbers {|f(1sync(c′)) −
f(1sync(c))| : c′ ∈ Bk(c)\{c} and 1sync(c) 6= 1sync(c′)}.
Since |Bk(c)| ≤

(
n
k

)2
2k ≤ 2n2k, we have that

|P(c)| ≤2n2k2o(logn)

=22k logn+o(logn).

Therefore, there exists a number p(c) ∈ [1, 22k logn+o(logn)]
such that p(c) does not divide |f(1sync(c′))−f(1sync(c))| for
all c′ ∈ Bk(c)\{c} satisfying 1sync(c) 6= 1sync(c′). Hence,
if f(1sync(c′)) ≡ f(1sync(c)) mod p(c) and c′ ∈ Bk(c),
we have that p(c) divides |f(1sync(c′)) − f(1sync(c))|, and
thus that 1sync(c′) = 1sync(c). This completes the proof of
Lemma 2.

V. HASH FOR k-DENSE SEQUENCES

In this section, we present a hash function of size 4k log n+
o(log n) bits for correcting k deletions in a k-dense se-
quence c, when the synchronization vector 1sync(c) is known.
This proves Lemma 3. Recall that a sequence c is k-dense if
there is a 0 run of length at most L between any two 1’s in
the synchronization vector 1sync(c), where L is given in (5).

Let the indices of the 1 entries in 1sync(c) be t1 < t2 <
. . . < tJ , where J =

∑n
i=1 1sync(c)i is the number of 1

entries in 1sync(c). For notation convenience, let t0 = 0
and tJ+1 = n+ 1. Split c into blocks a0, . . . ,aJ , where

aj = (ctj+1, ctj+2, . . . , ctj+1−1) (18)

for j ∈ [0, J ]. The blocks are separated by the synchronization
patterns. Since c is k-dense, the length |aj | of aj is at most
L. The goal is to protect all blocks aj , j ∈ [0, J ] and then c.

We will show that given 1sync(c) and a length n − k
subsequence d of c, most of the blocks aj can be recovered
with up to 2k block errors. This is done by noticing that
no deletion occurs in most of the blocks and their boundary,
which are marked by the synchronization patterns in c. These
blocks with no deletions inside are not destructed and appear
in d with bits indices decrease by an integer at most k. They
can be identified by looking at the synchronization patterns
in d.

For blocks that are not recovered, we show that they can
be recovered with up to k deletion errors. Then we use the k-
deletion correcting hash function H(aj), j ∈ [0, J ] defined
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in Lemma 5 to correct the block errors. The size of the
hash H(aj) is at most L/dlog ne(2k log log n + O(1)) bits,
since the length of aj is at most L. Note that the recovered
blocks aj result in the right hash H(aj). It suffices to protect
the hashes H(aj), j ∈ [0, J ] using a Reed-Solomon code.
Define the hash function Hashk as follows.

Hashk(c) = RS2k((H(a0), . . . ,H(aJ))), (19)

where RS2k(c) is the redundancy of a systematic Reed-
Solomon code (see e.g., [16] for an introduction to the
Reed-Solomon code) protecting the length J + 1 se-
quence (H(a0), . . . ,H(aJ)) from 2k symbol substitution
errors. Note that the redundancy of a k-error correcting
Reed-Solomon code of length n and alphabet size q ≥
n − 1 is 2k log q bits [16]. The symbols H(aj),j ∈
[0, J ] have alphabet size at most 2d(L/dlogne)e(2k log logn+O(1))

and can be represented using d(L/dlog ne)e(2k log log n +
O(1)) bits. The length of Hashk(c) is max{4k log(J +
1), 4kd(L/dlog ne)e(2k log logn + O(1))}, which equals
4k log n+ o(log n) when k = o(

√
log log n).

We now present the following procedure that recovers c
from its length n − k subsequence d, given the hash func-
tion Hashk(c) and the synchronization vector 1sync(c).

1) Step 1: Let 1sync(d) ∈ {0, 1}n−k be the synchroniza-
tion vector of d. The indices of 1 entries in 1sync(c) are
known and given by 1 ≤ t1 < . . . < tJ ≤ n. Let t0 = 0
and tJ+1 = n+ 1.

2) Step 2: Let 1sync(d)0 = 1sync(d)n+1−k = 1. For
each j ∈ [0, J ], if there exist two numbers t′j ∈ [tj −
k, tj ] and t′j+1 ∈ [tj+1−k, tj+1] such that 1sync(d)t′j =

1sync(d)t′j+1
= 1 and t′j+1 − t′j = tj+1 − tj , let a′j =

(dt′j+1, dt′j+2, . . . , dt′j+1−1). Else let a′j = 0.
3) Step 3: Apply the Reed-Solomon decoder to re-

cover H(aj) from (H(a′0), . . . , H(a′J), Hashk(c)),
where aj is defined in (20), j ∈ [0, J ].

4) Step 4: Let bj = (dtj+1, dtj+2, . . . , dtj+1−k−1) and
recover aj by using bj and H(aj). Then

c = (a1, 1,a2, 1, . . . ,aJ−1, 1,aJ)

.
The following example illustrates how to recover the blocks
with at most 2k block errors.

Example 2. Let k = 2, n = 6, and sequence c the same as
in Example 1, i.e.,

c = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,

1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1).

The indices of the 1 entries in 1sync(c) are {6, 14, 23, 30}.
Then the tuple (t0, t1, t2, t3, t4, t5) = (0, 6, 14, 23, 30, 36) is
known at the decoder. Suppose the 2 deletions occurs at the
first and the last bits, resulting in a subsequence

d = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,

1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1).

Then the synchronization vector of d is given by

1sync(d) = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

with indices of the 1 entries given by {0, 6, 13, 22, 34}, where
it is assumed in the decoding procedure that 1sync(d)0 =
1sync(d)34 = 1. Then we have that t′0 = 0, t′1 = 6, t′2 =
13, and t′3 = 22, which implies that the intervals [t0, t1]
and [t2, t3] are good. Hence, we can recover 2 blocks a′0 =
(1, 1, 1, 1, 1) and a′2 = (1, 1, 1, 1, 1, 0, 1, 0). The number of
block errors is 3 ≤ 2k.

We now prove that the decoding procedure obtains the
correct c. Since ctj = 1sync(c)tj = 1 for j ∈ [1, J ], it suffices
to show that aj , j ∈ [0, J ] can be recovered correctly. Note
that (dtj+1, . . . , dtj+1−k−1) is a length |aj | − k subsequence
of (ctj+1, . . . , ctj+1−1) = aj . Hence aj can be correctly
decoded given bj and H(aj), j ∈ [0.J ]. It is then left to
recover H(aj) for j ∈ [0, J ]. To this end, we show that there
are at most 2k indices j, such that a′j 6= aj . Since H(aj) can
be computed for correct blocks aj , there are at most 2k symbol
errors in the sequence (H(a0), . . . ,H(aJ)), which can be cor-
rected given the Reed-Solomon code redundancy Hashk(c).

Let t′′j , j ∈ [1, J ] be the index of ctj in d after deletions
in c, where t′′j = −1 if ctj is deleted. Let t′′0 = 0 and t′′J+1 =
n + 1 − k. The interval [tj , tj+1], j ∈ [0.J ] is called good
if 1sync(d)t′′j = 1sync(d)t′′j+1

= 1 and t′′j+1 − t′′j = tj+1 − tj .
We now show that a′j = aj if the interval [tj , tj+1] is good.
Note that the bits dt′′j and dt′′j+1

come from ctj and ctj+1

respectively after deletions in c. Hence if [tj , tj+1] is good,
we have that t′′j+1 − t′′j = tj+1 − tj , and thus that

(dt′′j +1, . . . , dt′′j+1−1) = (ctj+1, . . . , ctj+1−1) = aj . (20)

Moreover, we have that 1sync(d)t′′
j

= 1sync(d)t′′j+1
= 1.

Since tj − t′′j ≤ k and tj+1 − t′′j+1 ≤ k by definition of t′′j
and t′′j+1, it follows from Step 2 in the decoding procedure
that t′j = t′′j , t′j+1 = t′′j+1, and a′j = (dt′′j +1, . . . , dt′′j+1−1).
Hence from (20), we conclude that a′j = aj when the
interval [tj , tj+1] is good.

Next, we show that a deletion can destroy at most 2 good
intervals. Notice that if no deletion occurs in c, then all
intervals [tj , tj+1], j ∈ [0, J ] are good. If no deletions occur in
the interval [tj−1, tj+2], then 1sync(d)t′′j = 1sync(d)t′′j+1

= 1

and t′′j+1 − t′′j = tj+1 − tj , where t′′j is the index of ctj
in d after deletions. Hence the interval [tj , tj+1] is good when
no deletion occurs in [tj−1, tj+2]. It follows that a deletion
that occurs in interval [tj , tj+1] can destroy at most 3 good
intervals [tj−1, tj ], [tj , tj+1], and [tj+1, tj+2]. We prove that
the deletion in [tj , tj+1] can destroy at most two of them.
If the deletion in [tj , tj+1] does not destroy the synchro-
nization pattern (ctj−3k+1, . . . , ctj+dlog ke+4), then it destroys
at most two good intervals [tj , tj+1] and [tj+1, tj+2]. If
the deletion in [tj , tj+1] destroys the synchronization pat-
tern (ctj−3k+1, . . . , ctj+dlog ke+4), then it destroys the pat-
tern (ctj , . . . , ctj+dlog ke+4) = 1dlog ke+5 and the synchroniza-
tion pattern (ctj+1−3k+1, . . . , ctj+1+dlog ke+4) is not affected.
As a result, the good interval [tj+1, tj+2] is not destroyed by
the deletion in [tj , tj+1]. At most two good intervals [tj−1, tj ]
and [tj , tj+1] are destroyed. Therefore, a deletion affects at
most two good intervals. This implies that k deletions result
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in at most 2k block errors a′j 6= aj . Therefore, the sequence c
can be recovered.

VI. GENERATING k-dense SEQUENCES

In this section we present an algorithm to compute the
map T (c), which transforms any sequence c ∈ {0, 1}n
into a k-dense sequence, and thus proves Lemma 4. Let 1x

and 0y denote sequences of consecutive x 1’s and consecu-
tive y 0’s, respectively. We first show in Proposition 3 that
any sequence c satisfying the following two properties is a k-
dense sequence. is k-dense. Then, the algorithm for computing
computing T (c) can be decomposed into two parts. In the first
part, we generate a sequence T1(c) that satisfies Property 1. In
the second part, we use T1(c) to compute T (c) that satisfies
both properties.

Property 1. Every length B , (dlog ke +
5)2dlog ke+9dlog ne interval of c contains the
pattern 1dlog ke+5, i.e., for any integer i ∈ [1, n−B+1],
there exists an integer j ∈ [i, i+B − dlog ke − 5] such
that (cj , cj+1, . . . , cj+dlog ke+4) = 1dlog ke+5.

Property 2. Every length R , (3k + dlog ke +
4)(dlog ne + 9 + dlog ke) interval of c contains a
length 3k+dlog ke+4 subinterval that does not contain
the pattern 1dlog ke+5, i.e., for any integer i ∈ [1, n−R+
1], there exists an integer j ∈ [i, i+R−3k−dlog ke−4],
such that (cm, cm+1, . . . , cm+dlog ke+4) 6= 1dlog ke+5 for
every m ∈ [j, j + 3k − 1].

Proposition 3. If a sequence c satisfies Property 1 and
Property 2, then it is a k-dense sequence.

Proof. Let the locations of the 1 entries in 1sync(c) be t1 <
. . . < tJ . Let t0 = 0 and tJ+1 = n + 1. From Definition 2,
it suffices to show that ti+1 − ti ≤ B + R + 1 = L + 1 for
any i ∈ [0, J ].

According to Property 2, there exists an index j∗ ∈
[ti, ti + R − 3k − dlog ke − 4], such that (cm, cm+1, . . . ,
cm+dlog ke+4) 6= 1dlog ke+5 for every m ∈ [j∗, j∗ + 3k − 1].
According to Property 1, there exists an integer x ∈ [j∗ +
1, j∗+B] such that (cx, cx+1, . . . , cx+dlog ke+4) = 1dlog ke+5.
Let ` = min{x ≥ j∗ : (cx, cx+1, . . . , cx+dlog ke+4) =
1dlog ke+5}. Then we have that ` 6= j∗, ` ≤ x ≤
j∗ + B, and thus that ` ∈ [j∗ + 1, j∗ + B]. In ad-
dition, (cm, cm+1, . . . , cm+dlog ke+4) 6= 1dlog ke+5 for ev-
ery m ∈ [j∗, `) = {j∗, . . . , ` − 1}. By definition of j∗, we
have that ` − j∗ ≥ 3k. Since (c`, c`+1, . . . , c`+dlog ke+4) =
1dlog ke+5, we have that 1sync(c)` = 1. Therefore, we con-
clude that

ti+1 − ti ≤ `− ti
≤ j∗ +B − ti
≤ R+B + 1

= L+ 1

A. Generating sequences satisfying Property 1

Given a sequence c ∈ {0, 1}n, we now generate T1(c) ∈
{0, 1}n+2dlog ke+10 that satisfies Property 1. The idea is to
repeatedly delete the length B subsequences of c that do
not contain the pattern 1dlog ke+5, and append length B
subsequences containing 1dlog ke+5 to the end, without losing
the information of the deleted subsequences. The deleting and
appending procedure repeats until no length B subsequence
with no 1dlog ke+5 pattern is found. Notice that any binary
sequence containing no pattern 1dlog ke+5 can be regarded as
a sequence of symbols with alphabet size 2dlog ke+5−1. Hence,
such binary sequence can be compressed to a shorter binary
sequence. In this way, we can add the index of the deleted
subsequence and the pattern 1dlog ke+5 to the compressed
sequence. The sequence keeps the same size after the deleting
and appending procedure.

Note that the above procedure keeps appending length B
subsequences to the end. Hence the suffix of T1(c) are
appended bits. To guarantee that these appended bits are not
deleted in the procedure, we keep track of the end index of the
non-appended bits n′ and always delete the bits with indices at
most n′. To deal with cases when a length B subsequence to be
deleted overlaps with the appended bits, we delete only non-
appended bits from it. Then, we append shorter subsequences
such that the total length does not change. The decoder detects
the shorter appended subsequences by looking at the length of
the 1 run in it.

Before presenting the details of encoding and decoding,
we need the following proposition, which states that the
length B binary sequences containing no 1dlog ke+5 pattern
can be compressed to shorter binary sequences.

Proposition 4. Let S be the set of sequences b ∈ {0, 1}B
such that (bi, . . . , bi+dlog ke+4) 6= 1dlog ke+5 for every i ∈
[1, B − dlog ke − 4]. There exists an invertible map φ :
S → {0, 1}B−dlogne−2dlog ke−12, such that both φ and its
inverse φ−1 can be computed in O(B) time.

Proof. For any b ∈ S, the procedure for computing φ(b)
is as follows. Split b into 2dlog ke+9dlog ne blocks of
length (dlog ke+5). Since each block is not 1dlog ke+5, it can
be represented by a symbol of alphabet size 2dlog ke+5 − 1.
Therefore, the sequence b can be uniquely represented by a
sequence v of 2dlog ke+9dlog ne symbols, each having alphabet
size 2dlog ke+5 − 1. Convert v into a binary sequence φ(b).
Then φ(b) can be represented by a binary sequence with
length

dlog2[(2dlog ke+5 − 1)2
dlog ke+9dlogn]ee

=dlog2[(1− 1/2dlog ke+5)2
dlog ke+9dlogne]e

+ (dlog ke+ 5)2dlog ke+9dlog ne

≤16dlog ne log2[(1− 1/2dlog ke+5)2
dlog ke+5

] +B + 1

(a)

≤ − 16dlog ne log2 e+B + 1

≤B − 16dlog ne+ 1
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Input sequence 11 . . . 011111110 001010 . . . 011 01001010111111101

Initialization 11 . . . 011111110

y1

1111111001010 . . . 011

y2

01001010111111101

x0n′

Round 1 11 . . . 011111110

x1

1111111001010 . . . 011

y2

01001010111111101

x0n′

Round 2 11 . . . 011111110

x1

00 . . . 0111110

x2

01001010111111101 1111111

x0n′

Fig. 3. This figure shows an example of how the encoding in Proposition 5 proceeds. The subsequences x0, x1, and x2 are the subsequences appended in
the Initialization step, the first, and the second round of delete and insert procedure, respectively. The subsequence y1 and y2 are the subsequences deleted
in the first and the second round of delete and insert procedure, respectively. The integer n′ indicates the end point of the non-appended bits.

≤B − dlog ne − 2dlog ke − 12,

where (a) follows from the fact that the function (1− 1/x)x

is increasing in x for x > 1 and that limx→∞(1 − 1/x)x =
1/e. Therefore, φ(b) can be represented by B − dlog ne −
2dlog ke− 12 bits. The inverse map φ−1 can be computed by
converting φ(b) back to a length 2dlog ke+9dlog ne sequence v
of alphabet size 2dlog ke+5 − 1. Then, concatenate the binary
representation of symbols in v, we obtain b.

The complexity for computing φ or φ−1 is that of converting
binary sequences to sequences of alphabet size 2dlog ke+5 − 1
or vice versa, which is O(B).

With the function φ defined in Proposition 4, the following
proposition provides details of the encoding/decoding for
computing T1(c). An example illustrating the encoding in
Proposition 5 is presented in Fig. 3.

Proposition 5. For integers k and n > k, there exists an
invertible map T1 : {0, 1}n → {0, 1}n+2dlog ke+10, com-
putable in O(n2k log n log2 k) time, such that T1(c) satisfies
Property 1. Moreover, either
(T1(c)n+dlog ke+6, . . . , T1(c)n+2dlog ke+10) = 1dlog ke+5 or
(T1(c)n+dlog ke+5, . . . , T1(c)n+2dlog ke+9) = 1dlog ke+5.

Proof. For a sequence c ∈ {0, 1}n, the encoding procedure
for computing T1(c) is as follows.

1) Initialization: Let T1(c) = c. Append 12dlog ke+10 to
the end of the sequence T1(c). Let n′ = n. Go to Step 1.

2) Step 1: If there exists an integer i ∈ [1, n′]
such that (T1(c)j , T1(c)j+1, . . . , T1(c)j+dlog ke+4) 6=
1dlog ke+5 for every j ∈ [i, i + B − dlog ke − 5], go
to Step 2. Else go to Step 4.

3) Step 2: If i > n′ − B + 1, go to Step 3. Else,
delete (T1(c)i, . . . , T1(c)i+B−1) from T1(c) and ap-
pend (i, φ(T1(c)i, . . . , T1(c)i+B−1), 0, 12dlog ke+10, 0)
to the end of T1(c), where the appended i is encoded
by dlog ne binary bits. Let n′ = n′ −B. Go to Step 1.

4) Step 3: Delete (T1(c)i, . . . , T1(c)n′) from T1(c) and
append (i, φ(T1(c)i, . . . , T1(c)n′ ,0

i+B−n′−1), 0,
12dlog ke+10−(i+B−n′−1), 0) to the end of T1(c).
Let n′ = i − 1, where the appended i is encoded
by dlog ne binary bits. Go to Step 1.

5) Step 4: Output T1(c).

In the encoding procedure, Step 2 and Step 3 are the deleting
and appending operation described above, while Step 3 deals
with the case when the deleted subsequence overlaps with the
appended bits. Note that the index of the deleted subsequence
is provided in the appended subsequence, so that the decoder
can recover the deleted subsequence, given the appended
subsequence. According to Proposition 4 and the fact that the
index i has size dlog ne bits, the lengths of the deleted and
appended subsequences in Step 2 or Step 3 are equal. Hence,
the sequence T1(c) keeps constant and is n+ 2dlog ke+ 10.

We first show that the integer n′ is the split in-
dex of appended bits and non-appended bits. Specifi-
cally, (T1(c)n′+1, . . . , T1(c)n+2dlog ke+10) are the appended
bits and (T1(c)1, . . . , T1(c)n′) are non-appended bits that
remain after deleting operations in Step 2 and Step 3. In
addition, (T1(c)n′+1, . . . , T1(c)n′+2dlog ke+10) = 12dlog ke+10

are the bits appended in the Initialization step. The claim holds
in the Initialization step. Note that in each round of Step 2
or Step 3, the deleted bits have indices at most n′ and the
integer n′ decreases by the length of deleted subsequence.
Hence, the claim always holds.

We now show that the output sequence T1(c) satisfies
Property 1.

We have shown that (T1(c)n′+1, . . . , T1(c)n′+dlog ke+5) =
1dlog ke+5. Then according to the if conditions in Step 1
and Step 2 that lead to Step 3, the integer i in Step 3
satisfies 1 ≤ i + B − n′ − 1 ≤ dlog ke + 4.
Otherwise the subsequence (T1(c)i, . . . , T1(c)i+B−1) con-
tains (T1(c)n′+1, . . . , T1(c)n′+dlog ke+5) = 1dlog ke+5, which
does not satisfy the if condition in Step 1. Therefore, the 1
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run 12dlog ke+10−(i+B−n′−1) in the appended subsequence in
Step 3 has length at least dlog ke + 6. Thus, the 1dlog ke+5

pattern appears in the subsequence appended in each round of
Step 2 or Step 3. Moreover, the index distance between the
two 1dlog ke+5 patterns in two consecutively appended subse-
quences is at most B−dlog ke−5. We conclude that for i′ >
n′, any length B subsequence (T1(c)i, . . . , T1(c)i+B−1) con-
tains the 1dlog ke+5 pattern. Furthermore, note that for any i ∈
[1, n′], there exists some j ∈ [i, i + B − dlog ke − 5] such
that T1(c)j = T1(c)j+1 = . . . = T1(c)j+dlog ke+4 = 1.
Otherwise T1(c)i is deleted in Step 2 or Step 3. Hence, the
sequence T1(c) satisfies Property 1.

Note that the integer n′ decreases in each round. Hence, the
algorithm terminates within O(n) rounds of Step 1, Step 2
and Step 3. Therefore, the search for the i satisfying the
if condition in Step 1 takes O(nB log k) time. In addition,
the deleting and appending operation in Step 2 or Step 3
takes at most O(n + B) time. Hence, the total complexity
is O(n2k log n log2 k).

Next, we show that either (T1(c)n+dlog ke+6, . . . ,
T1(c)n+2dlog ke+10) = 1dlog ke+5 or (T1(c)n+dlog ke+5, . . . ,
T1(c)n+2dlog ke+9) = 1dlog ke+5. The former holds when the
appending operation only occurs in the Initialization step.
Note that all subsequence appended in Step 2 or Step 3 ends
with a 1 run with length at least dlog ke+ 6 followed by a 0
bit. Hence the latter holds when the appending operation in
Step 2 or Step 3 occurs.

The decoding follows a reverse procedure of the encod-
ing, by repeatedly removing the appended subsequences and
use them to recover the deleted subsequences. Since the
appended subsequences contain the φ function and position
of the deleted subsequences, the deleted subsequences can be
recovered. The decoding stops when the end of the appended
sequence becomes a 1 bit. The decoder determines the length
of the appended subsequence by looking at the 1 run before
the ending 0 bit. The decoding procedure that recovers c
from T1(c) is given as follows.

1) Initialization: Let c = T1(c) and go to Step 1.
2) Step 1: If cn+2dlog ke+10 = 0, find the length `

of the 1 run that ends with cn+2dlog ke+9. Let i be
the integer representation of (cn+4dlog ke+21−B−`,
cn+4dlog ke+22−B−`, . . . , cn+4dlog ke+20−B−`+dlogne).
Let b be the sequence obtained by computing
φ−1(cn+4dlog ke+21−B−`+dlogne,
cn+4dlog ke+22−B−`+dlogne, . . . , cn+2dlog ke+8−`),
where the function φ is defined in Proposition 4,
Delete (cn+4dlog ke+21−B−`, cn+4dlog ke+22−B−`, . . . ,
cn+2dlog ke+10) from c and insert (b1, . . . ,
bB−2dlog ke−10+`) at location i of c. Repeat. Else
delete cn+1, . . . , cn+2dlog ke+10 and go to Step 2.

3) Step 2: Output c.

In each round of Step 1, the decoder processes an appended
subsequence of length B or less. It can be seen that the
appended subsequences in the encoding procedure end with
a 0 bit except for the one appended in the Initialization step.
Hence if the end of an appended sequence is a 1 bit, the
subsequence is the 12dlog ke+10 appended in the Initialization

step of the encoding procedure. Moreover, since 12dlog ke+10

is the appended subsequence, the decoding procedure ends
up in 12dlog ke+10 after processing all other appended subse-
quences.

Note that the encoding procedure consists of a series of
deleting and appending operations. The decoding procedure
exactly reverses the series of operations in the encoding
procedure. Let T1,i(c), i ∈ [0, I] be the sequence T1(c)
obtained after the i-th deleting and appending operation in the
encoding procedure, where I is the number of deleting and
appending operations in total in the encoding procedure. We
have that T1,0(c) = c and that T1,I(c) is the final output T1(c).
Then the decoding procedure obtains T1,I−i(c), i ∈ [0, I] after
the i-th deleting and inserting operation. Hence we get the
output T1,I−I(c) = c in the decoding procedure.

B. Proof of Lemma 4

After having the sequence T1(c) ∈ {0, 1}n+2dlog ke+10

satisfying Property 1, we now use T1(c) to generate a
sequence T (c) ∈ {0, 1}n+3k+3dlog ke+15 that satisfies both
Property 1 and Property 2. According to Proposition 3, T (c)
is a k-dense sequence and Lemma 4 is proved. The encoding
of T (c) follows a similar repetitive deleting and append-
ing procedure to the encoding in Proposition 5. To satisfy
Property 2, we repeatedly look for length R subsequences,
every length 3k + dlog ke + 4 subsequence of which con-
tains 1dlog ke+5 patterns, delete most part of it, and then
append a subsequence that contains a length 3k+ dlog ke+4
subsequence containing no 1dlog ke+5 pattern. The appended
subsequence has all information about the deleted sequence,
including the index and the bits, and has the same length as
that of the deleted subsequence. To this end, we need to con-
struct a map that compresses a length 3k+dlog ke+4 sequence
containing 1dlog ke+5 patterns to a shorter sequence. Moreover,
the compressed sequence does not contain 1dlog ke+5 patterns.
Then we can compress the deleted subsequence and add
indices and markers as we did in Proposition 5. The end of
an appended subsequence is marked by a 0 bit. We also keep
track of the integer n′, which is the end of non-appended bits,
to guarantee that the appended bits are not deleted.

Note that we do not delete the whole length R subse-
quences, every length 3k+ dlog ke+4 subsequence of which
contains 1dlog ke+5 patterns. Instead, we split the length R
subsequence into blocks of length 3k + dlog ke + 4, each
containing 1dlog ke+5 patterns. Then the first and the last blocks
remain and the blocks in the middle are deleted. This is to
keep the sequence T (c) satisfying Property 1 and protect the
appended bits from being deleted.

The following proposition presents the compression map de-
scribed above, which encodes a sequence containing 1dlog ke+5

patterns into a shorter sequence without the 1dlog ke+5 pat-
tern. Similar to the encoding procedures that compute T (c)
and T1(c), the algorithm for computing the compression map
follows a delete and append process, which repeatedly deletes
1dlog ke+5 patterns and appends their indices and 0 runs to the
end.
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Proposition 6. For an integer k, let c ∈ {0, 1}3k+dlog ke+4

be a sequence such that ci = ci+1 = . . . = ci+dlog ke+4 = 1
for some i ∈ [1, 3k]. There exists an invertible mapping T2 :
{0, 1}3k+dlog ke+4 → {0, 1}3k+dlog ke+3, such that T2(c) con-
tains no dlog ke + 5 consecutive 1 bits. Both T2 and its
inverse T−12 are computable in O(k2 log k) time.

Proof. Given c ∈ {0, 1}3k+dlog ke+4, the encoding procedure
for computing T2(c) is as follows.

1) Initialization: Let T2(c) = c. Append 0 to the end of
the sequence T2(c). Find the smallest i ∈ [1, 3k] such
that T2(c)i = T2(c)i+1 = . . . = T2(c)i+dlog ke+4 = 1.
Delete (T2(c)i, . . . , T2(c)i+dlog ke+4) from T2(c) and
append (i,0dlog ke+3−dlog(3k)e) to the end of T2(c),
where the appended i is encoded by dlog 3ke binary
bits. . Let n′ = 3k − 1 and i = 1. Go to Step 1.

2) Step 1: If there exists an integer i ≤ n′ such
that T2(c)i = T2(c)i+1 = . . . = T2(c)i+dlog ke+4 = 1,
delete (T2(c)i, . . . , T2(c)i+dlog ke+4) from T2(c) and
append (i,0dlog ke+4−dlog(3k)e, 1) to the end of T2(c).
Let n′ = n′−dlog ke− 5 and i = 1. Repeat. Else go to
Step 2.

3) Step 2: Output T2(c).

There are deleting and appending operations in both the
Initialization step and Step 1. In the Initialization step, the
length of the deleted subsequence is larger than the length of
the appended subsequence by 2. Hence after appending the 0
bit in the beginning, the length of T2(c) decreases by 1 after
the Initialization step. The lengths of the deleted and appended
subsequence in Step 1 are equal. Hence, the length of the
sequence T2(c) keeps constant after the Initialization step and
is

3k + dlog ke+ 4 + 1− dlog ke − 5 + dlog ke+ 3

=3k + dlog ke+ 3.

We show that (T2(c)n′+1, . . . , T2(c)3k+dlog ke+3) are ap-
pended bits and (T2(c)1, . . . , T2(c)n′) are non-appended bits
remain in T2(c) after deletions. In particular, T2(c)n′+1 = 0
is the bit appended in the beginning of the Initialization
step. The claims hold after the Initialization step. Note
that when T2(c)n′ = 0, the integer i satisfying the if
condition in Step i is at most n′ − dlog ke − 4. Oth-
erwise (T2(c)i, . . . , T2(c)i+dlog ke+4) 6= 1. Therefore, the
deleted bits in Step 1 have indices at most n′. Moreover, the in-
teger n’ decreases by the length of the deleted bits. Therefore,
we conclude that (T2(c)n′+1, . . . , T2(c)3k+dlog ke+3) consists
of appended bits and that T2(c)n′+1 = 0 is the bit appended
at the beginning of the Initialization step. The appended
bits (T2(c)n′+1, . . . , T2(c)3k+dlog ke+3) are not deleted in the
procedure.

We now show that T2(c) contains no 1dlog ke+5 patterns.
Note that the 1dlog ke+5 patterns with indices at most n′ are
deleted in the encoding procedure. Since T2(c)n′+1 = 0, there
is no 1dlog ke+5 pattern containing the bit T2(c)n′+1. Hence
a 1dlog ke+5 pattern has indices at least n′+1. Moreover, since
the dlog ke+4-th bit in each appended subsequence is a 0 bit,
there is no 1dlog ke+5 pattern in the appended bits. Hence,

no 1dlog ke+5 with indices at least n′ + 1 exists. This implies
that T2(c) does not contain 1dlog ke+5 patterns.

Since n′ decreases in each step, the algorithm terminates
within O(k) iterations of Step 1. Since it takes O(k log k) to
look for the integer i, the total complexity is O(k2 log k).

The decoding T−12 (c), which recovers c from T2(c), follows
a reverse procedure of the encoding and is presented in the
following.

1) Initialization: Let c = T2(c) and go to Step 1.
2) Step 1: If c3k+dlog ke+3 = 1, let i be the inte-

ger representation of (c3k−1, c3k, . . . , c3k+dlog 3ke−2).
Delete (c3k−1, c3k, . . . , c3k+dlog ke+3) from c and in-
sert 1dlog ke+5 at location i of c. Repeat. Else go to
Step 2.

3) Step 2: Let i be the decimal representation of
(c3k+1, c3k+2, . . . , c3k+dlog(3k)e). Delete (c3k, c3k+2,
. . . , c3k+dlog ke+3) from c and insert 1dlog ke+5 at lo-
cation i of c. Output c.

Note that in the encoding procedure, the appended subse-
quence in the Initialization Step ends with a 0. The appended
subsequence in Step 1 ends with a 1. Hence the algorithm
stops when c3k+dlog ke+3 = 0 and all subsequences appended
in Step 1 of the encoding have be processed.

Similarly to the proof of correctness of decoding in Propo-
sition 5, the decoding procedure exactly reverses the series of
operations in the encoding procedure. Note that the appended
subsequences contain the index of the deleted 1dlog ke+5

patterns. Let T2,i(c), i ∈ [0, I] be the sequence obtained
after the i-th deleting and appending operation in the encoding
procedure, where I is the number of deleting and appending
operations in total in the encoding procedure. Then T2,i(c) is
the sequence obtained after the I − i-th deleting and inserting
operation in the decoding procedure. Therefore, the decoding
procedure recovers the sequence c after the I-th operation.

The complexity of the decoding has the same or-
der O(k2 log k) as that of the encoding.

We are now ready to present the encoding and decoding
procedures for computing T (c), which generates k-dense
sequences that satisfy Property 1 and Property 2. The encoding
procedure is as follows.

1) Initialization: Let T (c) = T1(c). Append (03k,
1dlog ke+5) to the end of the sequence T (c). Let n′ =
n+ 2dlog ke+ 10 (the length of T1(c)). Go to Step 1.

2) Step 1: If there exists an integer i ≤
min{n′, n + 3k + 3dlog ke + 16 − R}, such that
for every j ∈ [i, i + R − 3k − dlog ke − 4],
there exists an integer m ∈ [j, j + 3k − 1]
satisfying (T (c)m, T (c)m+1, . . . , T (c)m+dlog ke+4) =
1dlog ke+5, split (T (c)i, T (c)i+1, . . . , T (c)i+R−1)
into (dlog ne + 9 + dlog ke) blocks b1,b2, . . . ,
bdlogne+9+dlog ke of length 3k + dlog ke + 4. Delete
(b2, . . . ,bdlogne+8+dlog ke) from T (c) and append
(0, T2(b2), T2(b3), . . . , T2(bdlogne+8+dlog ke), i + 3k +
dlog ke + 4,1dlog ke+5, 0) to the end of T (c), where
the appended i + 3k + dlog ke + 4 encoded by dlog ne
binary bits. Let n′ = n′ − R + 6k + 2dlog ke + 8.
Repeat. Else go to Step 2.
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3) Step 2: Output T (c).
Note that the index i + 3k + dlog ke + 4 has size log n bits.
Then from Proposition 6, it can be verified that the lengths of
the deleted and appended subsequences in Step 1 are equal.
Hence T (c) keeps constant and is n+ 3k + 3dlog ke+ 15.

Similar to the encoding in Proposition 5 and
Proposition 6, we show that the integer n′ marks the
end of the non-appended bits, i.e., the subsequence
(T (c)n′+1, . . . , (c)n+3k+3dlog ke+15) consists of appended
bits and (T (c)1, . . . , T (c)n′) are non-appended bits
that remain after deletions. In addition, we show that
T (c)n′+1, . . . , T (c)n′+3k = 03k and that the appended bits are
not deleted. The claims hold in the Initialization step. Suppose
the claims hold in the r-th round of Step 1. Then in the r+1-
th round of Step 1, the integer i satisfying the if condition in
Step 1 must be in the range [1, n′ − R + 3k + dlog ke + 4].
Otherwise, since T (c)n′+1, . . . , T (c)n′+3k = 03k in the r-th
round, we have an integer n′ ∈ [i, i+R−3k−dlog ke−4] such
that (T (c)m, T (c)m+1, . . . , T (c)m+dlog ke+4) 6= 1dlog ke+5

for every m ∈ [n′, n′ + 3k − 1]. This contradicts to the
fact that i satisfies the if condition. Moreover, note that the
block bdlogne+9+dlog ke in (T (c)i, . . . , T (c)i+R−1) is not
deleted in Step 1, which implies that the bits with indices at
least i+R−3k−dlog ke−4 ≤ n′ are not deleted. Note that n′

decreases by the length of the deleted sequence in Step 1.
We conclude that (T (c)n′+1, . . . , (c)n+3k+3dlog ke+15)
consists of appended bits and these bits are not deleted.
Specifically, T (c)n′+1, . . . , T (c)n′+3k are the bits appended
in the Initialization step. By induction, the claims hold.

We now show by induction on the number of rounds r
that T (c) satisfies Property 1. From Proposition 5, the ini-
tial sequence T (c) = (T1(c),0

3k,1dlog ke+5) satisfies Prop-
erty 1. Hence the claim holds for r = 0. Suppose af-
ter r-th round of Step 1, T (c) satisfies Property 1. In
the r + 1-th round, the deleting operation leaves blocks b1

and bdlogne+9+dlog ke, which both contain 1dlog ke+5 as a sub-
sequence. Hence T (c) satisfies Property 1 after the deletion.
In addition, all appended subsequences end with a 1dlog ke+5

pattern or a 1dlog ke+5 pattern followed by a 0 bit. Note
that these appended subsequences are not deleted. Hence the
index distance between two 1dlog ke+5 patterns in the appended
bits (T (c)n′+1, . . . , T (c)n+3k+3dlog ke+15 is at most R−6k−
2dlog ke−8 ≤ B−dlog ke−5. Therefore, The sequence T (c)
satisfies Property 1 after the appending operation.

Next, we prove that T (c) satisfies Property 2. According
to the encoding procedure, for any i ∈ [1,min{n′, n +
3k + 3dlog ke + 16 − R}], there exists some j ∈ [i, i +
R − 3k − dlog ke − 4], such that (T (c)m, T (c)m+1, . . . ,
T (c)m+dlog ke+4) 6= 1dlog ke+5 for every m ∈ [j, j + 3k − 1].
Otherwise, the encoding does not stop. Note that the appended
bits (T (c)n′+1, . . . , T (c)n+3k+3dlog ke+15) are not deleted.
Hence for i ∈ [n′ + 1, n + 3k + 3dlog ke + 16 − R], the
interval [i, i + R − 1] contains the first 3k + dlog ke + 4
bits (0, T2(b2)) of some appended subsequence, where b2 ∈
{0, 1}3k+dlog ke+4 contains the 1dlog ke+5 pattern. Let [j, j +
3k + dlog ke + 3] be the indices of the 3k + dlog ke + 4
bits (0, T2(b2)) in T (c). According to Proposition 6, the
function T2(b2) does not contain the 1dlog ke+5 pattern.

Hence (T (c)m, T (c)m+1, . . . , T (c)m+dlog ke+4) 6= 1dlog ke+5

for every m ∈ [j, j + 3k − 1]. Therefore, any interval of
length R contains a length 3k + dlog ke + 4 subsequence
with no 1dlog ke+5 pattern. Hence, the sequence T (c) satisfies
Property 2. According to Proposition 3, we conclude that T (c)
satisfies Property 1 and Property 2 and is k-dense.

Since n′ decreases in the encoding procedure, the pro-
cedure terminates within O(n) iterations. Each iteration
takes O(nk log kR) time to search for the integer i sat-
isfying the if condition and O(log nk2 log k) to compute
the T2 functions of the blocks. Hence the complexity is at
most O(n2k2 log k(log n)). Therefore, the total complexity
is poly(n, k).

Finally we present the following decoding procedure that
recovers c from T (c), which follows a reverse procedure of
the encoding.

1) Initialization: Let c = T (c) and go to Step 1.
2) Step 1: If cn+3k+3dlog ke+15 = 0, let i be the integer

representation of (cn+3k+2dlog ke+10−dlogne,
cn+3k+2dlog ke+11−dlogne, . . . , cn+3k+2dlog ke+9).
Split (cn+9k+5dlog ke+25−R, . . . , cn+3k+2dlog ke+9−dlogne)
into dlog ne + 7 + dlog ke blocks (b′1, . . . ,
b′dlogne+7+dlog ke) of length 3k+ dlog ke+3. Compute
bj = T−12 (b′j) for j ∈ [1, dlog ne+ 7+ dlog ke], where
T−12 (b′j) is defined in Proposition 6. Delete
(cn+9k+5dlog ke+24−R, . . . , cn+3k+3dlog ke+15) from
c and insert b1, . . . ,bdlogne+7+dlog ke at location
i of c. Repeat. Else delete (cn+2dlog ke+11, . . . ,
cn+3k+3dlog ke+15) and go to Step 2.

3) Step 2: Output T−11 (c).
According to the encoding procedure, the inserted bits end
with a 1 entry in the Initialization Step and with a 0 entry
in Step 1. Note that the inserted bits are not deleted in the
encoding procedure. Hence the decoding algorithm stops when
an ending 1 entry is detected.

Similar to the proof of correctness of decoding in Propo-
sition 5 and Proposition 6, the decoding procedure exactly
reverses the series of operations in the encoding procedure.
Therefore, the decoding procedure decodes the sequence c
correctly.

VII. CONCLUSION AND FUTURE WORK

We construct a k-deletion correcting code with optimal
order redundancy. Interesting open problems include finding
complexity O(NO(1)) encoding/decoding algorithms for our
code, as well as constructing a systematic k-deletion correcting
code with optimal redundancy.
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