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Abstract—In this paper polar codes are proposed for two re-
ceiver broadcast channels with receiver message side information
(BCSI) and noncausal state available at the encoder, referred to
as BCSI with noncausal state for short, where the two receivers
know a priori the private messages intended for each other.
We establish an achievable rate region for BCSI with noncausal
state and show that it is strictly larger than the straightforward
extension of the Gelfand-Pinsker result. To achieve the established
rate region, we present polar codes for the general Gelfand-
Pinsker problem, which adopts chaining construction and utilizes
causal information to pre-transmit the frozen bits. It is also shown
that causal information is necessary to pre-transmit the frozen
bits. Based on the result of Gelfand-Pinsker problem, we then
propose polar codes for BCSI with noncausal state. The difficulty
is that there are multiple chains sharing common information
bit indices. To avoid value assignment conflicts, a nontrivial
polarization alignment scheme is presented. It is shown that the
proposed rate region is tight for degraded BCSI with noncausal
state.

I. INTRODUCTION

In Arikan’s pioneering work [1], he introduced polar codes,
which constitute a new and promising class of practical
capacity achieving codes. In the past years, polar codes have
been richly investigated and generalized to various chan-
nel/source coding settings. In the work [2], Goela, Abbe,
and Gastpar introduced polar codes for realizing superposition
strategy and Marton’s strategy, which comprise the main
coding strategies for broadcast channels. To guarantee the
alignment of polarization indices, the coding scheme requires
some degradedness conditions with respect to the auxiliary
random variables and channel outputs. Such degradedness
requirements can be removed by adopting the polarization
alignment techniques proposed by Mondelli, Hassani, Sason,
and Urbanke [3], where multi-block transmission and block
chaining are considered. The work in [4] proposed polar codes
for two receiver broadcast channels with receiver message side
information (BCSI), where each receiver knows the message
intended for the other.

In this paper, we consider polar codes for BCSI with
common message and with noncausal state available at the
encoder, which is a generalization of Gelfand-Pinsker channel
and BCSI. Such channel arises in multi-user cellular com-
munication systems with two-way communication tasks or
pairwise message exchange requests. For each pair of users

that exchange messages, broadcasting to them in the downlink
transmission can be regarded as BCSI with noncausal state,
by considering the interference from signals of other users
as noncausal state known at the base station. BCSI with
noncausal state was studied in a previous work [5], where
a coding scheme combining Gelfand-Pinsker binning and
network coding was proposed. Its related scenarios, broadcast
channels with noncausal state, has received much attention and
has been investigated in, e.g., [6]–[8].

Polar codes for Gelfand-Pinsker problems have been pre-
sented. Polar codes for binary channels with additive noise and
interference was proposed in [9]. Noisy write once memory
was considered in [10], where polar codes with polynomial
computational and storage complexity were proposed. For gen-
eral Gelfand-Pinsker settings, the work in [10], [11] proposed
polar coding schemes based on the the block chaining method
in [3]. The problem of applying the chaining construction
to the Gelfand-Pinsker settings is to communicate the state
information to the receiver in the first block. This problem was
not addressed in [11]. The work in [10] proposed a solution
to this problem by using an extra phase to transmit the frozen
bits in the first block, where the channel state information is
not used by the encoder. As we will show in the next, this
solution may not work in some cases. In particular, the state
information is needed by the encoder to transmit the frozen
bits in the first block.

In this paper, we establish an achievable rate region for
BCSI with common message and with noncausal state. Polar
coding schemes are presented to achieve the established re-
gion. To this end, we first propose polar codes for the general
Gelfand-Pinsker problem, based on the chaining construction
in [3]. A pre-communication phase that utilizes causal state
information is performed to transmit the frozen bits in the
first block. It is also shown that the state information is
necessary to transmit these frozen bits. We then use the result
in Gelfand-Pinsker problem to construct polar codes for BCSI
with noncausal state. To overcome the problem that the two
chains may overlap and cause value assignment conflicts, the
two chains are generated in opposite directions so that the
overlapped sets only needs to carry the XOR of the bits
contained in the two chains. We present an example to show
that it is strictly larger than the achievable rate region in [5]. It
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Fig. 1. BCSI with noncausal state

is shown that the established rate region is tight for degraded
BCSI with common message and with noncausal state. The
extension of the scheme in this paper to higher input alphabet
size can be made following the techniques in [12].

II. SYSTEM MODEL

Broadcast channels with receiver message side information
(BCSI) and with noncausal state available at the encoder (as
shown in Fig. 1), which is referred to as BCSI with noncausal
state for short, is a two-receiver discrete memoryless broadcast
channels (DMBC) with state

(X × S, PY1,Y2|X,S(y1, y2|x, s),Y1 × Y2), (1)

with input alphabet X , state alphabet S, output alphabets
Y1,Y2 and conditional distribution PY1,Y2|X,S (y1, y2|x, s).
The channel state sequence S1:n is a sequence of n i.i.d.
random variables with pmf PS(s) and is noncausally available
at the encoder. The sender wishes to send a message tuple
(M0,M1, M2) ∈ [1 : 2nR0 ] × [1 : 2nR1 ] × [1 : 2nR2 ]
to receivers 1 and 2, where receivers 1 and 2 know side
information of messages M2 and M1 respectively. M0 is a
common message intended for both receivers.

A (2nR0 , 2nR1 , 2nR2 , n) code consists of a message set [1 :
2nR0 ]× [1 : 2nR1 ]× [1 : 2nR2 ], an encoder ζ : [1 : 2nR0 ]× [1 :
2nR1 ]× [1 : 2nR2 ]×Sn → Xn that maps (M0,M1,M2, S

1:n)
to a codeword X1:n, and two decoders ξ1 : Yn

1 × [1 : 2nR2 ]→
[1 : 2nR0 ]× [1 : 2nR1 ] and ξ2 : Yn

2 × [1 : 2nR1 ]→ [1 : 2nR0 ]×
[1 : 2nR2 ] that map (Y 1:n

1 ,M2) and (Y 1:n
2 ,M1) to (M̂0, M̂1)

and (M̂0, M̂2) respectively. Here Y 1:n
i is the received sequence

of receiver i. A rate tuple (R0, R1, R2) is achievable if there
exists a (2nR0 , 2nR1 , 2nR2 , n) code such that the average error
probability of the code

P (n)
e = P{ξ1(Y 1:n

1 ,M2) 6= {M0,M1}
∪ ξ2(Y 1:n

2 ,M1) 6= {M0,M2}}
(2)

tends to zero as n goes to infinity. The capacity region C is the
closure of the set of all achievable rate tuples (R0, R1, R2).

For each random variable U , we shall use the notation U1:n

to denote the sequence of n i.i.d. random variables drawn from
pmf PU (u). The i-th element of U1:n is denoted as U i.

III. BCSI WITH COMMON MESSAGE AND WITH
NONCAUSAL STATE

In this section a polar coding scheme is proposed for BCSI
with common message and with noncausal state (1). It is also

shown that the proposed polar coding scheme achieves the
capacity region for degraded BCSI with common message and
with noncausal state.

The Gelfand-Pinsker capacity for channel with random state
noncausally known at the encoder is given by

C = max
pU|S(u|s),x(u,s)

I(U ;Y )− I(U ;S). (3)

A straightforward extension of the Gelfand-Pinsker capacity
for BCSI with noncausal state is given by [5]

R0 +R1 ≤ I(U ;Y1)− I(U ;S),

R0 +R2 ≤ I(U ;Y2)− I(U ;S).
(4)

We now establish an achievable rate region, which is strictly
larger than that characterized by (4), and present polar codes
for achieving the region.

Theorem 1. For BCSI with common message and with
noncausal state (1), where the input has binary alphabet, there
exists a polar code sequence with block length n that achieves
(R0, R1, R2) if

R1 +R0 ≤ I(V1, V2;Y1)− I(V1, V2;S),
R2 +R0 ≤ I(V1;Y2)− I(V1;S)

(5)

for binary variables V1, V2 that satisfy (1) (V1, V2) →
(X,S)→ Y1 form a Markov chain, (2) (V1, V2)→ (X,S)→
Y2 form a Markov chain, (3) I(V2;Y1|V1) > I(V2;S|V1), (4)
I(V1;Y1) > I(V1;S), (5) I(V1;Y2) > I(V1;S), and for some
function f(v1, v2, s) : {0, 1}2 × S → X . As n increases, the
encoding and decoding complexity is O(n log n) and the error
probability is O(2−n

β

) for 0 < β < 1
2 .

Remark 1. The rate region (5) reduces to (4) when the random
variable V2 remains constant.

Remark 2. Symmetrically, the rate region is achievable if the
role of receiver 1 and receiver 2 is reversed.

To give an example where the region (5) is strictly
larger than (4), consider a broadcast channels with state
(X ×S, PY1,Y2|X,S(y1, y2|x, s),Y1×Y2), with input alphabet
X = {1, 2, 3, 4}, and state alphabet S = {0, 1, 2, 3, 4}. Such
channel can be viewed as memory with stuck faults with 5
states. The state S takes values s = 1, 2, 3, 4 with probability
p
4 respectively. And S = 0 with probability 1−p. The received
data Y1 = S when S = 1, 2, 3, 4. And Y1 = X when S = 0.
The received data Y2 is a blurred version of Y1, where Y2 = 0
when Y1 = 1, 2, and Y2 = 1 when Y1 = 3, 4.

Proposition 1. For the broadcast channels with state described
above, the rate region (5) achieves the channel capacity, while
the region (4) is strictly smaller than the channel capacity.

Proof: See [?] for details.
Now we define the sets for polarization and coding. Let

(V 1:n
1 , V 1:n

2 ) be a sequence of n i.i.d. random variables with
pmf PV1,V2

(v1, v2). Set the sequences U1:n
1 = V 1:n

1 Gn and



U1:n
2 = V 1:n

2 Gn. Define the polarization sets

H(n)
U1

= {i ∈ [n] : Z(U i
1|U1:i−1

1 ) ≥ 1− 2−n
β

},

L(n)
U1

= {i ∈ [n] : Z(U i
1|U1:i−1

1 ) ≤ 2−n
β

},

H(n)
U1|S = {i ∈ [n] : Z(U i

1|S1:n, U1:i−1
1 ) ≥ 1− 2−n

β

},

L(n)
U1|S = {i ∈ [n] : Z(U i

1|S1:n, U1:i−1
1 ) ≤ 2−n

β

},

H(n)
U1|Y1

= {i ∈ [n] : Z(U i
1|Y 1:n

1 , U1:i−1
1 ) ≥ 1− 2−n

β

},

L(n)
U1|Y1

= {i ∈ [n] : Z(U i
1|Y 1:n

1 , U1:i−1
1 ) ≤ 2−n

β

},

H(n)
U1|Y2

= {i ∈ [n] : Z(U i
1|Y 1:n

2 , U1:i−1
1 ) ≥ 1− 2−n

β

},

L(n)
U1|Y2

= {i ∈ [n] : Z(U i
1|Y 1:n

2 , U1:i−1
1 ) ≤ 2−n

β

},

H(n)
U2|Y1,U1

={i∈ [n] :Z(U i
2|Y 1:n

1 , U1:n
1 , U1:i−1

2 )≥1− 2−n
β

},

L(n)
U2|Y1,U1

= {i ∈ [n] : Z(U i
2|Y 1:n

1 , U1:n
1 , U1:i−1

2 ) ≤ 2−n
β

}.
(6)

The information sets and the remaining frozen sets for re-
ceivers 1 and 2 are defined as follows:

I1 = H(n)
U1|S ∩ L

(n)
U1|Y1

, F1a = H(n)
U1|S ∩ {L

(n)
U1|Y1

}c,

F1r = (H(n)
U1|S)

c ∩ {L(n)
U1|Y1

}c, F1f = (H(n)
U1|S)

c ∩ {L(n)
U1|Y1

},

I2 = H(n)
U1|S ∩ L

(n)
U1|Y2

, F2a = H(n)
U1|S ∩ {L

(n)
U1|Y2

}c,

F2r = (H(n)
U1|S)

c ∩ {L(n)
U1|Y2

}c, F2f = (H(n)
U1|S)

c ∩ {L(n)
U1|Y2

}.
(7)

A. Polar Codes for the General Gelfand-Pinsker Problem

Let us now consider polar codes for realizing the Gelfand-
Pinsker binning scheme. Without loss of generality, transmis-
sion to receiver 1 is assumed. We use the chaining construc-
tion, stated as follows. In block 1, the encoder puts the message
information in the bits uI1 , and generates the remaining frozen
bits uI

c
1 using randomly chosen maps with randomness shared

between the encoder and the decoders. For block j = 2, . . . , k,
the encoder chooses a subset of the information set R1 ⊆ I1
and fills the bits uR1

1 with the information contained in uF1r

of block j − 1, which is approximately determined by the
state sequence Sn and can not be recovered by using the
received signal y1:n1 . Then the encoder puts information in
the bits uI1\R1 and generates the frozen bits uI

c
1 according

to randomly chosen maps. Here the bit sets uR1 in blocks
j = 1, . . . , k can be regarded as the chain to transmit the
frozen bits uF1r to user 1.

Decoder 1 decodes from block k to block 1. Note that for
block j = k − 1, . . . , 1, the bits uF1r

1 can be recovered if
decoding in block j + 1 is successful. Since the remaining
bits can be recovered either by applying maximum a posteriori
rule or by using the randomly chosen maps, decoder 1 is
able to decode the sequence u1:n for block j = k − 1, . . . , 1
if it decodes u1:n of block j = k successfully. The main
difficulty here is the transmission of block k. The work in [10]
proposed a scheme to transmit the bits of block k by using
an extra transmission phase, where state side information is
not used at the encoder. There are counterexamples indicating

that the scheme in [10] may not work. Consider a binary
symmetric channel with additive interference Y = X⊕Z⊕S,
where Z ∼ Bern(p) and S ∼ Bern( 12 ). It is easy to see
that the channel capacity when the encoder does not use the
state side information is zero, meaning that the extra phase
is not capable of transmitting information. However, when
the causal state information is utilized at the encoder, the
channel capacity becomes 1 −H(p), which is nonzero when
0 ≤ p < 1

2 . Hence the information can be transmitted. The
following lemma shows that it is sufficient to pre-communicate
the bits uF1r

1 of block k by adopting polar coding with causal
side information.

Lemma 1. For a channel with random state (X ×
S, PY |X,S(y|x, s),Y), where the state is noncausally known
at the encoder, if the channel capacity

C = max
pU|S(u|s),f(u,s)

I(U ;Y )− I(U ;S) (8)

is greater than 0, then maxpU (u),f(u,s) I(U ;Y ) > 0, i.e., the
capacity for channel with causal state known at the encoder
is greater than 0.

To pre-transmit the bits uF1r
1 of block k, an extra phase that

consists of t blocks is used, where the encoder adopts polar
codes for channel with causal state. The encoder first chooses a
random variable (V ′, f ′(v, s)) = argmaxPV (v),f(v,s)I(V ;Y )
and sets the sequence U ′1:n = V ′1:nGn. In each block
j = 1, . . . , t, the bits uF1r

1 of block k are put in locations
I ′1 = HU ′ ∩ LU ′|Y1

. And the frozen bits u(I
′
1)
c

are generated
using randomly chosen maps as usual. Then the encoder
transmits f ′(v′, s) over the channel. Upon decoding, decoder 1
decodes the sequence u′1:n by applying maximum a posteriori
rule and using the randomly chosen maps. Let Ccausal =
maxPV (v),f(v,s) I(V ;Y ) be the capacity for channel with
state sequence causally available at the encoder. According
to Lemma 1, Ccausal > 0. By fixing t =

⌈
|F1r|

Ccausal

⌉
, the pre-

communication of bits uF1r
1 of block k can be completed in t

blocks. The average message rate is given by

R1 =
1

kn+ tn
[k(|I1| − |R1|) + |I1\R1|]

=
1

kn+ 2tn
[k(|H(n)

U ∩ L(n)
U |Y1
\H(n)

U ∩ (H(n)
U |S)

c|

− |H(n)
U ∩ (H(n)

U |S)
c\H(n)

U ∩ L(n)
U |Y1
|) + |I1\R1|]

=
1

kn+ 2tn
[k(|H(n)

U ∩ L(n)
U |Y1
|

− |H(n)
U ∩ (H(n)

U |S)
c|) + |I1\R1|]

=
k

k+2t
(I(V ;Y1)−I(V ;S))+

1

kn+2tn
|I1\R1|+ o(1).

(9)

As k increases to infinity, the rate R1 approaches I(V ;Y1)−
I(V ;S). Similar to polar codes for BCSI with common
message, the coding complexity is O(n log n) and the error
probability is O(2−n

β

) for any 0 < β < 1
2 .



B. Polar Codes for BCSI with noncausal state

To begin with, split the message M1 into messages M11 and
M10 at rates R11 and R10 respectively. The coding scheme for
BCSI with noncausal state employs a superposition strategy,
where the information of (M0,M10,M2) is carried by a
sequence u1:n1 and the message M11 is put in another sequence
u1:n2 . The encoder transmits f(v1, v2, s), where v1:n1 = u1:n1 Gn

and v1:n2 = u1:n2 Gn. Let the information rates carried by u1:n1

and u1:n2 be given by

R0 +R10 ≤ I(V1;Y1)− I(V1;S),
R0 +R2 ≤ I(V1 : Y2)− I(V1;S),

R11 ≤ I(V2;Y1|V1)− I(V2;S|V1).
(10)

Summing the first and the third inequality in (10), we get (5).
Let us first deal with the transmission of the sequence

u1:n1 , which can be viewed as Gelfand-Pinsker binning simul-
taneously for the two users. The difficulty here is that the
chain construction involves multiple chains. In particular, each
decoder m needs a chain to transmit the frozen bits Fmr.
The two chains must be aligned in a same codeword without
conflicts, where a position is assigned with two different
values. To tackle the problem that the two chains may overlap
and cause conflicts, we first deal with the case when the two
chains do not overlap. Then we show that the case when the
two chains overlap can be converted to the first case.

Let us assume that R10 ≥ R2. The arguments will be
similar when R10 ≤ R2. Split the message M10 into messages
M100 and M101 at rates R100 and R101 respectively such
that R100 = R2. The new equivalent common message is
set as M ′0 = (M100 ⊕M2,M0). Then we have R1 + R0 =
R0 + R10 + R11 = R′0 + R101 + R11, R2 + R0 = R′0. Set
R′0 = |I2|−|F2r|

n and R′0 + R101 = |I1|−|F1r|
n . Consider the

following two cases: (a) nR′0 ≥ |I1∩I2|. (b) nR′0 ≤ |I1∩I2|.
Case (a) : In this case, we can choose a subset R1 ⊆ (I1−

I2) and a subset R2 ⊆ (I2 − I1) such that |R1| = |F1r| and
|R2| = |F2r|. Similar as in the single user Gelfand-Pinsker
case, the subsets R1 and R2 act the roles of generating the
two chains to transmit the frozen bits uF1r and uF2r to the two
users respectively. In case (a) the two chains do not overlap.
Define the sets

M1 = I1\R1, M2 = I2\R2

D1 =M1 −M2, D2 =M2 −M1.
(11)

Let D10 ⊆ D1 be a subset of D1 such that |D10| = |D2|.
The coding scheme to transmit u1:n1 is presented in Fig.5. The
first t blocks j = 1, . . . , t are used to pre-communicate the
bits uF2r

1 of block j = t + 1. And the last t blocks j =
k+ t+1, . . . , k+2t conveys the bits uF1r

1 of block j = k+ t.
In block j = t + 1, the encoder fills the bits uR2

1 with the
information contained in uF2r

1 of block j+1 and puts the M ′0
information into bits uM2

1 . In block j = t+2, . . . , k+t−1, the
encoder copies the bits uF2r

1 of block j +1 and the bits uF1r
1

of block j−1 to uR2
1 and uR1

1 respectively. The bits uD10
1 are

filled with uD2
1 bits of block j − 1. The bits uD1\D10

1 and bits
uM2
1 are inserted with M101 bits and M ′0 bits respectively. In

D10 

D1 
I1⋃I2 𝑐 

M1 

R1 F1𝑟  

Frozen Sets 

D2 

M2 

R2 F2𝑟  

… 

Pre-communication phase 
User 2 

Block j=1 to j=t 

𝑀0
′  𝑀101 

𝑀0
′  𝑀0

′  

Pre-communication phase 
User 1  

Block j=k+t+1 to j=k+2t 

𝑀0
′  𝑀0

′  𝑀101 

Block 𝑗 = 𝑡 + 1 

Block 𝑗 = 𝑡 + 2 

Block 𝑗 = 𝑡 + 𝑘 

Fig. 2. Polar codes for transmitting u1:n
1 in case (a).

block j = k+ t, the encoder inserts the positions R1 with the
information contained in uF1r

1 of block j−1. The bits uD10
1 are

filled with uD2
1 of block j− 1 and the bits uM1\D10

1 are filled
with the information of M101. The remaining bits are frozen
and generated using randomized maps and the randomness is
shared between the encoder and the decoders.

Upon decoding, user 2 begins by decoding the first t blocks
in the pre-communication phase. Then it starts from block
j = t+1 to block j = k+ t. For block t+1, the bits uI2∪F2f

1

can be decoded by maximum a posteriori rule and the bits
uF2a
1 can be recovered using the shared randomized maps.

The bits uF2r
1 are pre-communicated through the first t blocks

. For block j = t+2, . . . , k+ t− 1, The bits uF2r
1 , uD10

1 , and
uR1
1 can be recovered since the content therein is contained

in the bits uR2
1 , uD2

1 , and uF1r
1 respectively decoded in the

last block j − 1. Meanwhile, the bits uD1−D10
1 is available

at user 2 as side information. The bits uI21 can be decoded
based on the received sequence y1:n2 . The remaining frozen
bits u(I1∪I2)

c

1 can be calculated using the shared randomized
maps. Therefore, user 2 decodes successfully. In block j = k,
the decoding of the bits u(R2)

c

1 is the same as that in block
j = t + 2, . . . , k + t − 1. The bits uR2

1 are recovered using
the randomly chosen maps. Similarly, user 1 starts from block
k + 2t to block t+ 1 and is able to decode successfully.

Case (b) : In this case, |F2r| > |I2 − I1|, which implies
that R2 ∩ I1 6= ∅ for any subset R2 ∈ I2 with |R2| = |F2r|.
Hence in this case the two chains may overlap with each other.
To avoid the value assignment conflicts in the overlapped set,
the main idea is to let the bits uR2∩I1

1 carry the information
contained in uR2

1 and uI11 simultaneously. Let W ′1 and W ′2
be a subset of information carried in (M101, u

R1
1 ) and uR2

1

respectively such that log2 |W ′1| = log2 |W ′2| = |I1 ∩ I2| −
nR′0. Let M ′′0 = (M ′0,W

′
1 ⊕ W ′2), where W ′1 ⊕ W ′2 is the

bitwise XOR of W ′1 and W ′2. Since R′′0 = |I1∩I2|
n , we can

adopt the coding scheme of case (a), by regarding M ′′0 as the
new equivalent common message. Note that in block j = t+1,
the bits uR1

1 does not contain information. Hence decoder 2
can recover W ′1 and thus the information contained in W ′2. For
blocks j = t+2, . . . , k+t, decoder 2 knows the information of
(M101, u

R1
1 ) since uR1

1 copies the bits uF1r
1 from block j−1.

Hence decoder 2 can recover the information contained in W ′2.
Similarly, decoder 1 can recover the information contained in



W ′1. The message rates (R0, R10, R2) are given by

R0 +R10 =
1

kn+ 2tn
[(k − 1)(|I1| − |R1|) + |M1 ∩M2|]

=
k − 1

k + 2t
(I(V1;Y1)− I(V1;S)) +

1

k
|M1 ∩M2|+ o(1)

R0 +R2 =
1

kn+ 2tn
[(k − 1)(|I2| − |R2|) + |M1 ∩M2|]

=
k − 1

k + 2t
(I(V1;Y2)− I(V1;S)) +

1

k
|M1 ∩M2|+ o(1)

(12)

The transmission of sequence u1:n2 can be regarded as Gelfand-
Pinsker binning for user 1. Define

I11 = H(n)
U2|S,U1

∩ L(n)
U2|Y1,U1

,

F11r = (H(n)
U2|S,U1

)c ∩ {L(n)
U2|Y1,U1

}c,
(13)

The encoder uses t blocks as pre-communication phase and
transmits M11 through k blocks. Choose a subset R11 ⊆ I11
such that |R11| = |F11r|. The average rate per symbol R11 is
given by

R11 =
1

kn+ tn
[k(|I11| − |R11|) + |I11\R11|]

=
k

kn+ tn
[I(V2;Y1|V1)− I(V2;S|V1) + |I11\R11|+ o(1)].

(14)

Let Ccausal be Ccausal = max{maxPV (v),x(v,s) I(V ;Y1),
maxPV (v),x(v,s) I(V ;Y2)}. According to Lemma 1, Ccausal >

0. Choose t = min{
⌈
|F1r|

Ccausal

⌉
,
⌈
|F2r|

Ccausal

⌉
,
⌈
|F11r|
Ccausal

⌉
} to be

fixed. Then according to (12) and (14), R1+R0 and R2+R0

approach arbitrarily closed to I(V1, V2;Y1)− I(V1, V2;S) and
I(V1;Y2) − I(V1;S) respectively, as k grows to infinity. As
n goes to infinity, the encoding and decoding complexity for
each user is O(n log n). The error probability is upper bounded
by O(2−n

β

) for 0 < β < 1
2 .

C. Degraded BCSI with Common Message and with Non-
causal State

Let us now establish the capacity region for degraded BCSI
with common message and with noncausal state. A broadcast
channels PY1,Y2|X,S(y1, y2|x, s) is physically degraded if

PY2|X,S(y2|x, s) = PY2|Y1
(y2|y1)PY1|X,S(y1|x, s) (15)

for some distribution PY1|Y2
(y1|y2), i.e., (X,S) →

Y1 → Y2 form a Markov chain. A broadcast channels
PY1,Y2|X,S(y1, y2|x, s) is stochastically degraded if

PY2|X,S(y2|x, s) =
∑

y1∈Y1

PY2|Y1
(y2|y1)PY1|X,S(y1|x, s)

(16)
for some distribution PY1|Y2

(y1|y2). Since the channel capacity
depends only on the conditional marginals PY1|X,S(y1|x, s)
and PY2|X,S(y2|x, s), the capacity region of a stochastically
degraded BC is the same as that of a corresponding physically

degraded BC [13]. Hence the notion of physically degrad-
ed and stochastically degraded are referred to as degrad-
ed, and the degradedness is denoted as PY1|X,S(y1|x, s) �
PY2|X,S(y2|x, s).

Theorem 2. Let R be the set of tuples (R0, R1, R2) that
satisfy

R1 +R0 ≤ I(V1, V2;Y1)− I(V1, V2;S),
R2 +R0 ≤ I(V1;Y2)− I(V1;S)

(17)

for some random variables V1, V2 such that (1) I(V2;Y1|V1) >
I(V2;S|V1), and (2) (V1, V2) → (S,X) → Y1 → Y2 form a
Markov chain, and for some function φ : V1 × V2 × S → X
such that x = φ(v1, v2, s). Then R is the capacity region of
the degraded BCSI with common message and with noncausal
state (X × S, PY1,Y2|X,S(y1, y2|x, s),Y1 × Y2).

IV. CONCLUSION

In this paper polar coding schemes are proposed for broad-
cast channels with receiver message side information (BCSI)
and with noncausal state available at the encoder. It is proved
that polar codes are able to achieve the Gelfand-Pinsker ca-
pacity through a two-phase transmission. In the first phase the
encoder pre-communicates information through polar coding
for channel with causal state. In the second phase the encoder
transmits messages using chaining construction of polar codes.
The presented polar coding scheme for BCSI with common
message and with noncausal state has a superposition coding
flavor in the sense that the code sequences are successively
generated.
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