
Optimal Codes for the q-ary Deletion Channel
Jin Sima1, Ryan Gabrys2 and Jehoshua Bruck1

1Department of Electrical Engineering, California Institute of Technology
2Department of Electrical and Computer Engineering, University of California San Diego

Abstract—The problem of constructing optimal multiple dele-
tion correcting codes has long been open until recent break-
through for binary cases. Yet comparatively less progress was
made in the non-binary counterpart, with the only rate one non-
binary deletion codes being Tenengolts’ construction that corrects
single deletion. In this paper, we present several q-ary t-deletion
correcting codes of length n that achieve optimal redundancy up
to a factor of a constant, based on the value of the alphabet size q.
For small q, our constructions have Opn2tqtq encoding/decoding
complexity. For large q, we take a different approach and the
construction has polynomial time complexity.

I. INTRODUCTION

In the last few years, considerable progress has been made
on the problem of coding for the binary deletion channel.
In [1], Brakensiek et al. constructed t-deletion correcting
codes of length n that require Opt2 log t log nq bits of re-
dundancy, which was a dramatic improvement over existing
coding schemes [9]. Several works quickly followed [1] that
further improved upon this result. For the case where t “ 2,
[6] and [16] constructed two deletion correcting codes that
require 8 log n and 7 log n bits of redundancy, respectively.
For general t, Haeupler [7] gives an explicit systematic con-

struction which requires θpt log2 n
t

log q ` tq bits of redundancy. In
[3], another construction was derived by Cheng et al., which is
not systematic, but is order optimal in the sense that it requires
Opt log nq bits of redundancy. An improved result in terms of
redundancy was presented in [14], in which a non-systematic
code that requires 8t log n bits of redundancy was constructed.

Despite this recent progress, the problem of constructing
codes for the q-ary deletion channel has received significantly
less attention. Tenengolts constructed a nearly optimal code
for the case of a single deletion [17]. The main idea in
[17] is to use a parity code to identify the symbol which
was deleted and an associated Levenshtein code to determine
the location of the deletion. For the case of multiple dele-
tions, the Helberg codes [9], which were originally proposed
for the binary deletion channel, were adapted and shown
to produce non-binary deletion correcting codes [10]. The
primary drawback to this class of codes is their low rate
[10]. Even for the case of two deletions the codes have rates
that do not approach 1 as n becomes large. It was shown
in [12] that the optimal redundancy of a q-ary t deletion
code asymptotically falls between t log n` t log q` oplog qnq
and 2t log n` t log q` oplog qnq.

This work was supported in part by NSF grants CCF-1816965 and CCF-
1717884.

In this work, we attempt to bring the existing results for
non-binary codes closer to the results obtained in the binary
domain. We highlight the main contributions of this work
through the following two theorems.

Theorem 1. Let t be a constant with respect to k and suppose
that q ă k. Then, there exists a non-systematic, efficiently
encodable/decodable t-deletion code of message length k over
an alphabet of size q that requires at most 2tp1` εqp2 log n`
log qq ` oplog nq bits of redundancy.

Theorem 2. Let t be a constant with respect to k and suppose
that q ě k. Then, there exists a non-systematic, efficiently
encodable/decodable t-deletion code of message length k over
an alphabet of size q that requires at most p30t` 1q log q bits
of redundancy.

As will be explained in more detail in Section III, the result
stated in the second theorem also extends to the case where t
is a constant fraction of code length n, when q is large enough.
A similar case when t is a fraction of n and q is a polynomial
of n was solved in [8].

We make use of two different approaches to obtain the
advertised results. For the results stated in the first theorem,
we rely on the syndrome compression technique, which is
introduced in our companion paper [15]. For the results in
the second theorem, we make use of results from repeat-free
sequences from [4]. To the best of the authors’ knowledge, the
best known constructions of non-binary codes for the deletion
channel can be found in [10] and so our results represent a
significant improvement over existing work.

This paper is organized as follows. In Section II, we present
our constructions for the case where q ď k, which make
use of the syndrome compression technique. Section III uses
repeat-free sequences to construct codes when q ě k. Finally
Section IV concludes the paper.

II. q-ARY CODES CORRECTING t DELETIONS FOR SMALL q

In this section we present t-deletion correcting codes for
q-ary alphabets where q is less than the message length k.
In particular, we consider the following two cases: p1q q ď
log k. p2q log k ă q ď k. The redundancy of the resulting
q-ary t-deletion codes is 2tp1` εqp2 log k` log qq ` oplog kq
bits. Before describing the code constructions, let us introduce
a few notations for this section. For a sequence u P rrqssm fi

t0, . . . , q´ 1um of length m over the alphabet t0, . . . , q´ 1u,
let Bq

t puq be its deletion ball with radius t, consisting of all
length m sequences obtained by deleting t q-ary symbols and

inserting t q-ary symbols in u. The following result comes
from a simple counting argument.

Claim 3. For any t and u P rrqssm, we have |Bq
t puq| ď m2tqt.

Define a binary matrix representation U for u P rrqssm as

U “

»

—

–

u1,1 u1,2 . . . u1,m
...

. . .
...

urlog qs,1 urlog qs,2 . . . urlog qs,m

fi

ffi

fl

P t0, 1urlog qsˆm,

(1)

where the i-th symbol of u is given by the i-th column of U
for i P rms fi t1, . . . , mu. Let Ur

i , i P rrlog qss and Uc
j , j P rms

be the i-th row and j-th column of U respectively. Then the
deletion of the j-th symbol of u corresponds to the deletion
of the column Uc

j in the matrix U.

A. Case p1q : q ď log k
In the following, we describe t-deletion correcting codes

for the case where q ď log k. The basic idea, which will
be described in more details that follow, is to interpret our
non-binary sequences as a set of rlog qs sequences over the
binary alphabet as illustrated in (1). We will then use a
compound labeling which is defined using the labeling from
binary deletion codes [1] on each of these binary sequences to
form a code that can correct t deletions. To further reduce the
size of the compound labeling, we adapt a technique called
syndrome compression [15]. Define

Mpm, tq “ tx P t0, 1um : For integers

` “ rlog t` log logpt` 1q ` 5s and d “ Optplog tq2 log mq

and for any string p P t0, 1u`, every substring of consecutive
d bits in x contains p as a substring.u

The following results will be used.

Lemma 4. (c.f., [1]) Fix an integer t ě 2. Then for all large m,
there exists Rpmq “ Opt2 log t log mq and a hash function ft :
Mpm, tq Ñ t0, 1uRpmq so that for any distinct x, y PMpm, tq,
we have ftpxq ‰ ftpyq, if y P B2

t pxqztxu.

Lemma 5. (c.f., [15]) Let f : t0, 1um Ñ rr2opplog log m¨log mqqss
be a labeling function such that for any fixed x P t0, 1um

and any y P Bq
t pxq, we have that f pxq ‰ f pyq. Then there

exists an integer a ď 2log |Bpxq|`oplog mq such that for any
y P Bq

t pxqztuu, we have that f pxq ı f pyq mod a.

We begin by describing the labeling. According to
Lemma 4, there exists a labeling function ftpuq : t0, 1um Ñ

t0, 1uOpt2 log t log mq such that ftpuq ‰ ftpyq for any u P

Mpm, tq and y P pBtpuqztuuq XMpm, tq. Define the set

Mpm, t, qq :“
!

u P t0, 1um : Ur
i PMpm, tq,@i P rrlog qss

)

.

and the labeling function

f q
t puq “

´

ftpUr
1q, . . . , ftpUr

rlog qs
q

¯

P t0, 1uRq .

Then, from definition of ftpuq, we have that f q
t puq ‰ f q

t pyq
for u P Mpm, t, qq and y P Mpm, t, qq X pBq

t puqztuuq. The

size of f q
t puq is Rq “ Opt2 log t log q log mq bits, so we

cannot immediately apply Lemma 5. To resolve this issue, we
apply the syndrome compression technique in [15] on f q

t puq
and obtain a new labeling f q1

t in the next lemma.

Lemma 6. There exists a labeling f q1
t : rrqssm Ñ

rr2opplog log m¨log mqss and f q1
t is such that for any u P rrqssm and

y P pBq
t puqztuuq XMpm, t, qq, we have f q1

t puq ‰ f q1
t pyq.

Since the labeling f q1
t works for sequences u in Mpm, t, qq,

we need to encode the information u P Fm
q to a sequence

in Mpm, t, qq. The next lemma, which can be proved fol-
lowing similar arguments in [3], shows that the sequences
in Mpm, t, qq can be generated using an Oplog mq bit seed s.

Lemma 7. For any u P rrqssm, there exists a seed
s P t0, 1uOplog mq and a function Tq

1 pu, sq, computable
in polypm, tq time, such that Tq

1 pu, sq PMpm, t, qq.

We are now ready to present our code construction in
terms of the encoding process. Let Et be the encoder that
takes a q-ary information sequence c P rrqssm as input and
outputs a q-ary codeword Etpcq such that the i-th row of the
matrix representation of Etpcq is ftpCr

i q, where ft is given in
Lemma 4.

1) Let u P t0, 1uk and suppose s is such that uT “

Tq
1 pu, sq PMpk, t, qq.

2) Suppose a P rr2Rss is such that f q1
t puTq ı f q1

t pyq mod
a for any y P Bq

t puTqXMpk, t, qq where R “ 2t log k`
oplog kq.

3) Then,

x “
ˆ

uT , Et
`

s, a, f q1
t puTq mod a

˘

˙

P rrqssn.

In the resulting codeword x above, we assume that s, a are
represented using q-ary symbols and similarly for the vector
Et
`

s, a, f q1
t puTq mod a

˘

.
Since f q1

t puTq P rr2opplog log kq¨log kqss, it follows from
Lemma 5 that pa, f q1

t puTq mod aq can be described us-
ing at most 4t log k ` Oplog kq bits. Since the size of
s is Oplog kq bits, the redundancy Et

`

s, a, f q1
t puTq mod

a
˘

can be represented by at most 4t log k ` Oplog kq `
Opt2 log q log t logp4t log kqq bits, which is at most 4tp1 `
εq log k bits.

Theorem 8. Let z be the result of at most t deletions occurring
to x. Then, we can uniquely recover x from z.

Proof: Let z be a length n ´ t subsequence
of x. Then pzk`1, . . . , zn´tq is a length n ´ t ´ k
subsequence of pxk`1, . . . , xnq. Since pxk`1, . . . , xnq “

Et
`

s, a, f q1
t puTq mod a

˘

is a codeword from a t-deletion
correcting code, we can recover

`

s, a, f q1
t puTq mod a

˘

from pzk`1, . . . , zn´tq. Since Tq
1 pu, sq P Mpk, t, qq, we

have that f q1
t pyq ı f q1

t pT
q
1 pu, sqq mod a for y P Mpk, t, qq

and y P Bq
t pT

q
1 pu, sqq. Therefore, the sequence Tq

1 pu, sq can
be recovered. Finally, given Tq

1 pu, sq and s, we can recover u,
and from u we can recover x.

B. Case p2q : log k ă q ď k

We now present a t-deletion code for the case log k ă q ă
k, which is more involved than the case q ď log k. There
are two key ideas in constructing the code. The first is to
narrow down the ranges of deletion locations to blocks of
length Oppolyptq log kq, thus recovering most of the blocks
in the sequence. To further recover the remaining blocks, the
second idea decomposes a q-ary representation of a sequence
down to its symbol histogram information, which counts the
frequency of the symbols, and the its permutation information,
which records the index of each symbol. The second idea has
a similar flavor to the construction of q-ary single deletion
correcting codes in [17], where the symbol histogram and
ascending/descending order information are used.

To achieve the first part, we generate binary sequences that
satisfy a period constraint, similar to [2]. A sequence u P

t0, 1um has period p if ui “ ui`p for i P rm´ ps. Let Lpu, pq
be the length of the longest subsequence of consecutive bits
in u that has period p. Denote

Lpm, tq “
!

u : Lpu, pq ď 2 log m` t` 1,@p P rts
)

to be the set of sequences whose subsequences of any pe-
riod p P rts has length at most 2 log m` t` 1. The following
lemma provides a randomized algorithm to generate sequences
in Lpm, tq.

Lemma 9. Let U` be a random string uniformly distributed
over t0, 1u` where ` “ 2 log m` t` 1. Let g1pU`q P t0, 1um

be the sequence obtained by repeating U` and taking the
first m bits. Then for any sequence u P t0, 1um, the bitwise
XOR g1pU`q ` u P Lpm, tq with probability at least 1´ 1{m.

Lemma 7 and Lemma 9 imply the following lemma.

Lemma 10. Let U` be a random string uniformly distributed
over t0, 1u`, where ` “ Oplog mq. Then there exists a map g2 :
t0, 1u` Ñ t0, 1um such that for every string u P t0, 1um, we
have that u` g2pU`q PMpm, tq XLpm, tq with probability at
least 1´ 1{m´ 1{polypmq.

Lemma 10 implies that for any sequence u P t0, 1um, it is
possible to search in polypmq time for a seed s that can be
described in Oplog mq bits such that g2psq ` u PMpm, tq X
Lpm, tq. For a sequence u P t0, 1um and integers tδ1, . . . , δtu,
where 1 ď δ1 ă δ2 ă . . . ă δt ď m, let upδ1, . . . , δtq
denote the length m ´ t subsequence obtained by deleting
bits uδi , i P rts. The next lemma shows that given u P Lpm, tq
and upδ1, . . . , δtq, it is possible to narrow down the range
of δi, i P rts.

Lemma 11. If a sequence u P Lpm, tq, then given u
and upδ1, . . . , δtq, we can find at most t ` 2 disjoint
intervals rai, bis Ă rms for i P rt ` 2s, with
length T fi p2t ` 1qp2 log m ` t ` 2q ` t each, such
that tδ1, . . . , δtu Ă YiPr1,t`2srai, bis. In addition,
for any j P rmszpYiPrrt`2ssrai, bisq, the number of
deletions Nj “ |rj ´ 1s X tδ1, . . . , δtu| that occur in
interval rj´ 1s can be determined.

Recall the matrix representation U of the q-ary codeword u.
In light of Lemma 11, we protect the first row Ur

1 from t
deletions and use it to determine the ranges where the deletions
occur. Since the deletion ranges have short length, most of the
symbols in sequence u P rrqssm can be recovered. To this
end, the first row Ur

1 is generated such that Ur
1 P Lpm, tq X

Mpm, tq. Define the set

Mqpm, tq “ tu : u P rrqssm, Ur
1 PMpm, tq XLpm, tqu.

The following Lemma generates sequences in Mqpm, tq and
can be proved using similar arguments that prove Lemma 7.

Lemma 12. For any u P rrqssm, there exists a seed s
of Oplog mq bits and a function Tq

2 pu, sq : rrqssm ˆ
t0, 1uOplog mq Ñ rrqssm, computable in polypm, tq time, such
that Tq

2 pu, sq PMqpm, tq.

Let u PMqpm, tq be a sequence and z “ upδ1, . . . , δtq be
the length m´ t subsequence of u after deleting the δi-th sym-
bol, i P rts. Since Ur

1 PMpm, tq, we can protect Ur
1 against t

deletions and recover it by using the code in Lemma 4.
Then given Ur

1 and its m´ t subsequence Zr
1, it is possible

from Lemma 11 to find t ` 2 intervals rai, bis, i P rt ` 2s
each having length T “ p2t ` 1qp2 log m ` t ` 2q ` t, that
contain all deletion locations. Split u into blocks ui “

pupi´1qT`1, . . . , uiTq, i P rrm{Tss, of length T. Then the
interval rai, bis, i P rt` 2s, covers at most two blocks in u.
Note that the symbol uj for j P rmszpYt`2

i“1rai, bisq can be
determined by

uj “ zj´Nj , (2)

where Nj is obtained from Lemma 11. Hence there are at
most 2t` 4 block errors in u after recovering Ur

1.
Next, we show how to correct the block errors. The idea

is to represent each block using its symbol frequency and the
symbol location. Specifically, for a q-ary sequence u P rrqssm,
define its histogram vector Hpuq : rrqssm Ñ rrm` 1ssq by

Hpuqi “ |tj : uj “ i, j P rrmssu|, i P rrqss, (3)

where the i-th entry of Hpuq is the number of occurrence
of i P rrqss in u. Its location vector Vpuq : rrqssm Ñ rmsm is
defined by

Vpuqi “ the index of the i-th largest symbol in u, (4)

where a symbol ui is larger than uj, if ui is lexicographically
larger than uj or if ui “ uj and i ą j. Note that by
definition, we have that uVpuq1 ą uVpuq2 ą . . . ą uVpuqm .
The following lemma shows that a sequence u P rrqssm is
uniquely determined by its histogram and the location vectors.

Lemma 13. Let u, y P Fm
q be two sequences. If Hpuq “ Hpyq

and Vpuq “ Vpyq, then u “ y

Next we show how to protect the histogram and location
vectors of u from block errors. Let the block histogram

vector BHpuq : rrqssm Ñ

´

rrT ` 1ssq
¯rm{Ts

of the se-
quence u P rrqssm be given by

BHpuqi “ Hpuiq, i P rrm{Tss, (5)

where the i-th entry of BHpuq is the histogram vector of the i-
th block in u, i P rrm{Tss. Similarly, define the block location

vector BVpuq : rrqssm Ñ
´

rTsT
¯rm{Ts

by

BVpuqi “ Vpuiq, i P rrm{Tss, (6)

where the i-th entry BVpuqi is the location vector of the i-th
block in u. According to Lemma 13, the sequence u can be
uniquely determined by BHpuq and BVpuq.

Define the function f BHpuq “

pRS2t`4pRS2tpBHpuq1q, . . . , RS2tpBHpuqr m
T sqq, which

is the redundancy of a systematic Reed-Solomon code
correcting 2t ` 4 erasure errors that has length rm

T s
sequence with entries RS2tpBHpuqiq, i P rrm{Tss. Each
entry RS2tpBHpuqiq represents the redundancy of a
systematic Reed Solomon code correcting t substitution
errors in the length q sequence Hpuiq for i P rrm{Tss. The
next lemma shows that f BHpuq can be used to protect BHpuq.
In the following, the function ft is from Lemma 4.

Lemma 14. Let u, y P Mqpm, tq be two sequences such
that y P Bq

t puq. If ftpUr
1q “ ftpYr

1q and f BHpuq “ f BHpyq,
then BHpuq “ BHpyq.

We now protect the block location vector BVpuq. Let

f BVpuq “ RS2t`4pBVpuqq (7)

be the redundancy of a systematic Reed-Solomon code correct-
ing 2t` 4 erasure errors in the length rm{Ts sequence BVpuq
with entries BVpuqi “ Vpuiq for i P rrm{Tss (see Eq. (6)).
The next lemma shows that f BVpuq can be used to re-
cover BVpuq.

Lemma 15. For sequences u, y P Mqpn, tq such that y P

Bq
t puq, if ftpUr

1q “ ftpYr
1q and f BVpuq “ f BVpyq,

then BVpuq “ BVpyq.

Now we are ready to define the labeling function f q2
t puq

for u PMqpm, tq. Let

f q2
t puq “ p ftpUr

1q, f BHpuq, f BVpuqq.

Then from Lemma 4, Lemma 11, Lemma 13, Lemma 14, and
Lemma 15, we have the following lemma.

Lemma 16. For two sequences u, y P Mqpm, tq, if y P

Bq
t puqzu, then f q2

t puq ‰ f q2
t pyq.

The image of the labeling function f q2
t puq consists of Rq

bits where Rq “ Opp2t ` 4q log log m ˚ log mq, Since the
size of f q2

t puq is greater than opplog log mq ¨ log mq, we
apply the syndrome compression technique twice, as we
did in Lemma 6 in Case p1q. Then there exists a label-
ing function f q3 : rrqssm Ñ rr2opplog log mq¨log mqss such
that f q3

t puq ‰ f q3
t pyq for u, y PMqpm, tq and y P Bt,qpuqzu.

Since f q3
t puq P rr2

opplog log mq¨log mqss, we use Lemma 5 and
find an integer α ď 2|B

q
t puq|`oplog mq “ 22 log n`log q`oplog mq

such that f q3
t puq ı f q3

t pyq mod α for u, y P Mqpm, tq
and y P Bq

t puqzu.

Define the code Cpn, t, qq of length n as follows:

Cpn, t, qq “
!

x “
´

Tq
2 pu, sq, Et

`

f q3
t pT

q
2 pu, sqq mod α, α, s

˘

¯

:

u P t0, 1uk
)

.

Since f q3
t pT

q
2 pu, sqq satisfies the redundancy property,

it follows from syndrome compression that the
redundancy p f q3

t pT
q
2 pu, sqq mod α, αq can be described

by 2 log |Bq
t puq| ` oplog kq “ 4t log k ` 2t log q ` oplog nq

bits. The seed s has length Oplog kq. Therefore, the total
redundancy is 4tp1` εq log k ` 2t log q ` oplog kq bits. The
correctness of the code can be proved by similar argument to
the one in the proof of Theorem 8.

Theorem 17. The code Cpn, t, qq is a t-deletion code.

III. q-ARY CODES CORRECTING t DELETIONS FOR LARGE
q

In this section, we consider the problem of coding for
deletions over large non-binary alphabets. Specifically, it is
assumed that q ą k in this section. We will show that in this
regime we can construct efficiently encodable/decodable codes
capable of correcting t deletions that requires roughly 30t log q
bits of redundancy. The approach taken in this section is fun-
damentally different than the syndrome compression technique
that has been used up to this point. Note that, compared to the
syndrome compression technique, the redundancy of our code
is high. However, the advantage of the approach discussed here
is that our methods are more applicable to a wider range of
t. In particular, the technique described here, which is similar
in spirit to the approach taken in [18] to correct errors in
permutations, has decoding/encoding complexity which scales
polynomially for any t and, in addition, leads to efficiently
encodable/decodable codes for the regime where t is a small
constant fraction of n.

We will construct codes by making use of the L-spectrum,
which represents the set of all length L subsequences of
consecutive symbols that appear in a vector. For a vector
u P rrqssm (where q ą m), we denote the L-spectrum for
u, denoted SLpuq as follows:

SLpuq “
!

pui, ui`1, . . . , ui`L´1q P rrqssL : i P rm´ L` 1s
)

.

Furthermore, we say that a sequence u P rrqssm is L-substring
unique if |SLpuq| “ m ´ L ` 1. The approach taken to
correcting deletions is motivated by the following two lemmas,
the first of which also appears in [5].

Lemma 18. (c.f., [5]) Suppose u P rrqssm is pL´ 1q-substring
unique. Then, u can be uniquely recovered from SLpuq.

For shorthand, for two sets A, B let A 4 B “ pAzBqY pBzAq
denote their symmetric difference.

Lemma 19. Suppose u P rrqssm is pL ´ 1q-substring unique
and z P rrqssm´t is the result of t deletions occurring to u.
Then, |SLpuq4 SLpzq| ď p2L´ 1qt.

In light of the previous two lemmas, our approach will
consist of two basic steps:

1) Transform step: In this step, we convert our information
vectors into vectors which are L-substring unique.

2) Coding step: We add additional redundancy symbols to
our codewords to ensure that we can recover their L-
spectrum provided deletion errors are allowed to occur.

We begin by describing some results that are related to the
transform step. Define U q

Lpmq so that

U q
Lpmq “

!

u P rrqssm : u is L-substring unique
)

.

The following result provides an algorithm to generate bi-
nary sequences in U q

Lpmq for L “ 2 log m` 2. This algorithm
will be used in Lemma 21 to generate non-binary sequences
that L-substring unique.

Lemma 20. [4], There exists an invertible function hL :
t0, 1um´1 Ñ t0, 1um, computable in polypmq time, that takes
any binary sequence u P t0, 1um´1 as input and outputs a
sequence hLpuq P U 2

Lpmq for L “ 2 log m` 2.

Lemma 20 can be used to generate sequences in U q
3 pmq.

Lemma 21. There exists an invertible function hL : rrqssm Ñ

rrqssm`1, computable in polypmq time, such that hLpuq P
U q

Lpm` 1q for any u P rrqssm where L “ 3.

Now, we turn to describing the coding step (step 2)) of
our construction. We will interpret the 4-spectrum of our
codewords using indicator vectors. In particular, define the 4-
profile indicator vector 1q

4puq P t0, 1uq4
, which is indexed by

the non-zero elements in rrqss4, by

1q
4puqp “

#

1 if p P S4puq,
0 else.

for p P rrq4ss. Note that the indices of the 1 entries in 1q
4puq

correspond to the 4-spectrum of u.
An immediate consequence of Lemma 19 is the following.

Corollary 22. Suppose u P rrqssm is 3-substring unique and
z P rrqssm´t is the result of t deletions occurring to u. Then,
we have that dHp1

q
4puq, 1q

4pzqq ď 7t, where dH denotes the
Hamming distance.

For a vector v P t0, 1uq4
, let BCH7tpvq denote the 28t log q

redundant bits from a systematic BCH code of dimension
q4 that is capable of correcting 7t substitution errors. The
idea now is to encode these 28t log q bits of information
(which will be used to protect the indicator vectors for our
codewords), into the final 29t` 1 symbols of our codewords,
while reserving a portion of each symbol to store location
information. Let BCH7tp1

q
4puqq

Let rI “ pr1, r2, . . . , r29tq P rr
q

30t ss
29t be the output of

BCH7tp1
q
4puqq represented as q

30t -ary symbols. Clearly, we can
represent 29t log q

30t bits of information with rI . Note that this
encoding is possible since 29t log q

30t ě 28t log q, which holds
when log q ě 29 logp30tq.

Let RS
t t`1

2 u
be a Reed-Solomon code over rr q

30t ss that can

correct either t t`1
2 u substitution errors or t erasures and the

code has minimum distance at least t` 1. We assume RS
t t`1

2 u

has dimension 29t and that for a vector v P rr q
30t ss RS

t t`1
2 u
pvq

outputs t redundant symbols. Let

r “
´

rI , RS
t t`1

2 u
prIq

¯

P rr
q

30t
ss30t.

We are now ready to present the t-deletion code in terms
of the encoding process. Suppose u P rrqssk is an information
vector of dimension k. The output of the encoding process will
be a vector x P rrqssn where n “ k` 1` 30t.

1) Suppose uT “ h3puq P rrqssk`1 where h3 is defined in
Lemma 21.

2) Let rI “ pr1, r2, . . . , r29tq P rr
q

30t ss
29t denote the q

30t -ary
representation of BCH7tp1

q
4puTqq P t0, 1u28t log q.

3) Let r “

´

rI , RS
t t`1

2 u
prIq

¯

“ pR1, R2, . . . , R30tq P

rr
q

30t ss
30t.

4) Define x “ px1, x2, . . . , xnq so that

xi “

#

puTqi if i P rk` 1s,
´

i´ pk` 1q, prqi´pk`1q

¯

if i P rnszrk` 1s

Theorem 23. Suppose x P rrqssn is transmitted and z P

rrqssn´t is received where z is the result of t deletions occurring
to x. Then given z it is possible to uniquely determine x.

IV. CONCLUSION

In this work, we constructed q-ary codes capable of cor-
recting deletions that significantly improves upon the current
state of the art. However, many important problems remain.
In particular, when q ď n, our technique is only applicable
to the setup where t is a constant with respect to n since
the encoding/decoding complexity becomes exponential oth-
erwise. In addition, none of the constructions presented here
are systematic.

REFERENCES

[1] J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-redundancy
codes for correcting multiple deletions,” in Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1884-
1892, SIAM, 2016.

[2] Y. Chee, H. Kiah, A.Vardy, V. Vu and E. Yaakobi “Coding for racetrack
memories,” IEEE Trans. Inform. Theory, vol. 64, no. 11, pp. 7094-7112,
2018.

[3] K. Cheng, Z. Jin, X. Li and K. Wu, “Deterministic document exchange
protocols, and almost optimal binary codes for edit errors,” IEEE 59th An-
nual Symposium on Foundations of Computer Science (FOCS), pp. 200–
211, 2018.

[4] O. Elishco, R. Gabrys, E. Yaakobi, and M. Medard, “Repeat-free codes,”
available at arXiv:1909.05694, 2019.

[5] R. Gabrys and O. Milenkovic, “Unique reconstruction of coded strings
from multiset substring spectra,” IEEE Transactions on Information
Theory, vol. 65, no. 12, pp. 7682-7696, 2019.

[6] R. Gabrys and F. Sala, “Codes correcting two deletions,” IEEE Transac-
tions on Information Theory, vol. 65, no. 2, 2019.

[7] B. Haeupler, “Optimal document exchange and new codes for small
number of insertions and deletions,” IEEE 60th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 334–347, 2019.

[8] B. Haeupler and A. Shahrasbi,”Synchronization strings: codes for in-
sertions and deletions approaching the singleton bound.” ACM SIGACT
Symposium on Theory of Computing (STOC), pp. 33–46. 2017.

[9] A.S.J. Helberg and H.C. Ferreira, “On multiple insertion/deletion correct-
ing codes,” IEEE Transactions on Information Theory, vol. 48, no. 1, pp.
305-308, 2002.

[10] T.A. Le and H.D. Nguyen, “New multiple insertion/deletion correcting
codes for non-binary alphabets,” IEEE Transactions on Information
Theory, vol. 62, no. 5, pp. 2682-2693, 2016.

[11] V.I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Soviet Physics-Doklady, vol. 10, no. 8, pp. 707-710,
1966.

[12] V.I. Levenshtein, “Bounds for deletion/insertion correcting codes,” in
Proc. IEEE Int. Symp. Inf. Theory, Lausanne, Switzerland, 2002.

[13] C. Schoeny, A. Wachter-Zeh, R. Gabrys, and E. Yaakobi, “Codes
Correcting a Burst of Deletions or Insertions,” IEEE Transactions on
Information Theory, vol. 63, no. 4, pp. 1971-1985, 2017.

[14] J. Sima and J. Bruck, “Optimal k-deletion correcting codes,” in Proc.
IEEE Int. Symp. Inf. Theory, Paris, France, 2019.

[15] J. Sima, R. Gabrys, and J. Bruck, “Syndrome Compression for Optimal
Redundancy Codes,” Proc. ISIT, 2020.

[16] J. Sima, N. Raviv, and J. Bruck, “Two deletion correcting codes from
indicator vectors,” in IEEE Transactions on Information Theory, vol. 66,
no. 4, pp. 2375-2391, 2020.

[17] G. Tenengolts, “Nonbinary codes, correcting single deletion or inser-
tion,” IEEE Trans. Inform. Theory, vol. 30, no. 5, pp. 766-769, 1984.

[18] S. Yang, C. Schoeny, and L. Dolecek, “Theoretical bounds and construc-
tions of codes in the generalized cayley metric,” in IEEE Transactions
on Information Theory, vol. 65, no. 8, 2019.

	Introduction
	q-ary Codes Correcting t Deletions for small q
	Case (1): q logk
	Case (2): logk<qk

	q-ary Codes Correcting t Deletions for large q
	Conclusion
	References

