
Robust Indexing – Optimal Codes for DNA Storage
Jin Sima1, Netanel Raviv2 and Jehoshua Bruck1

1Department of Electrical Engineering, California Institute of Technology, Pasadena 91125, CA, USA
2Department of Computer Science and Engineering, Washington University in Saint Louis, St. Louis 63130, MO, USA

Abstract—The channel model of encoding data as a set of
unordered strings is receiving great attention as it captures the
basic features of DNA storage systems. However, the challenge of
constructing optimal redundancy codes for this channel remained
elusive. In this paper, we solve this open problem and present an
order-wise optimal construction of codes that correct multiple
substitution errors for this channel model. The key ingredient
in the code construction is a technique we call robust indexing:
it assigns indices to unordered strings (hence, creating order)
and embeds information in the indices (eliminating unnecessary
redundancy). In addition, our robust indexing technique can be
applied to the construction of optimal deletion/insertion codes
for this channel.

I. INTRODUCTION

The interest in storing data in synthetic DNA is drastically
increasing lately, due to its advantages of ultra high data
density and longevity over other storage media. Tremendous
progress has been made in synthesizing and sequencing tech-
nologies, which brings about a new era in large-scale DNA
storage. Prototype implementations of DNA storage stored
643KB data in [3] and 739KB data in [6] respectively, which
were later improved in [4] and [20]. A recent work [12]
achieved 200MB storage of data.

In DNA storage systems, data is represented by strings of
four nucleotides that make up the synthesized DNA molecules.
One of the key features that distinguishes DNA storage from
conventional storage media is that data are encoded as an
unordered set of short strings, rather than a single long string.
This is since current technology cannot synthesize a single
DNA string long enough to encode the entire data. The typical
length of a short DNA string is several hundreds.

When writing the data, these short strings are synthesized
into DNA molecules and after a Polymerase Chain Reac-
tion (PCR) process, which amplifies the number of copies
of each DNA molecule, are stored in a DNA pool. When
reading the data, the DNA pool is sampled and sequenced,
producing multiple reads of the short strings that encode the
data. In the reading and writing process, sequencing errors
and synthesizing errors might occur, resulting in substitution,
deletion and insertion errors in the DNA strings. One way
to correct these errors is to cluster the erroneous reads and
use a sequence reconstruction algorithm to recover the strings.
Yet such algorithms at the decoder cannot correct writing
(synthesis) errors, which are amplified by the PCR process and
cause the reconstructed strings to be erroneous. Thus, we need
to construct error correcting codes for DNA storage, which is
the focus of this paper.

While many coding theoretic works have been done for
various channel models concerning different physical aspects
of DNA storage [8], [5], [13], and [7], this paper focuses
on coding over unordered sets, which captures some ba-
sic features in the writing and reading processes described
above. Specifically, consider encoding data into M strings of
length L. The decoder wishes to recover the data from erro-
neous versions of the M strings, which contain substitution,
deletion and insertion errors.

This model has been extensively investigated recently. The
work of [10] proposed constructions and upper bounds in
terms of number of erroneous strings and the maximum
number of errors in each string. To deal with unordered strings,
one of the natural approaches is to assign logM bits to each
string for indexing such that the strings are ordered. Such
index-based construction was considered in [11] and [15],
which attempted to correct errors in the indices. It was proved
in [16] from an information theoretic view that index-based
coding achieves the capacity of an unordered set of binary
symmetric channel.

From a coding theoretic view, index-based codes re-
quire O(M) bits of redundancy [10] and is suboptimal for
small number of errors. The work of [17] showed that for
a constant number K of substitution errors, the optimal
redundancy has the order O(K logML) and an explicit
code with O(K2 logML) bits of redundancy was given. The
problem of designing codes correcting a constant number of
substitutions was also studied in [19], from a generalized
Hamming distance perspective. Yet no order-wise optimal code
construction for substitution errors was given.

In this paper, we propose order-wise optimal code construc-
tions that achieve O(K logML) redundancy for K substitu-
tion errors, based on a technique called robust indexing. Our
main result is as follows

Theorem 1. For integers M,L, and K, let L′ , 3 logM +
4K2+1. If L′+4KL′+2K log(4KL′) ≤ L, then there exists
an explicit K-substitution code, computable in poly(M,L,K)
time, that has redundancy 2K logML+ (12K + 2) logM +
O(K3) +O(K log logML).

Instead of assigning index directly as in index-based coding,
we embed information into the index. Note that to combat
errors, the index bits themselves must form a substitution
code and information is carried through choices of the code.
Our robust indexing algorithm generates indexing bits in a
greedy manner and has polynomial complexity. Furthermore,

this algorithm also applies to deletion/insertion errors with
slight modification. With the recent progress in K-deletion
codes [18], [2], we obtain a code that corrects K deletions
with O(K logML) redundancy, which will be given in the
full version of this paper..

Theorem 2. For integers M,L,K, and L′ , 3 logM+4K2+
1, if L′+ 4KL′+ 2K log(4KL′) ≤ L, then there exists a K-
deletion code, computable in poly(M,L) time, that has redun-
dancy 8K logML+(12K+2) logM +O(K3)+o(logML).

The rest of the paper is organized as follows. Section II
presents the notations and channel model. In Section III we
provide an order-wise optimal code construction for substi-
tution errors, and the robust indexing algorithm is given in
Section IV. Section V concludes this paper.

II. PRELIMINARIES

We focus on the binary alphabet {0, 1}. For a set S and
an integer m, denote by

(
S
m

)
the family of all sets of m

different elements in S, and by
(
S
≤m
)

=
⋃M
i=1

(
S
m

)
the family

of all subsets of S with at most m elements. For an integer `,
let {0, 1}≤` be the set of all binary strings of length at most `.
In our channel model, it is assumed that the data is given
as a binary string and encoded as an unordered set of M
different strings {xi}Mi=1 of length L. Hence, in this paper,
a codeword refers to a set {xi}Mi=1 ∈

({0,1}L
M

)
, rather than a

vector as in classic coding theoretic settings. Each element xi
in a codeword is referred to as a string. The assumption that
the strings xi, i ∈ [M], in a codeword are different stems from
the fact that sequencing procedures cannot detect repeated
strings in the codeword {xi}Mi=1 by counting the frequency of
each string in the sample. Moreover, as we can see from the
definition of code redundancy that will be presented later, the
asymptotic redundancy of a code is not affected by allowing
repeated string in the codeword, whenever M = o(2L).

The codeword {xi}Mi=1 is subject to substitution, deletion
and insertion errors. In this paper, we propose codes for
correcting substitution errors, and codes for deletion error will
appear in future versions of this paper. A K-substitution error
is an operation that flips at most K bits in the codeword.
Each bit flip can occur in any of the strings xi, i ∈ [M],
where [M] , {1, . . . ,M}. A K-substitution error may cause
two strings xi and xj , i, j ∈ [M] to be equal. As a result, the
codeword {xi}Mi=1 might turn into a set of less than M strings
after a K-substitution-error. For any string set {xi}Mi=1 ∈({0,1}L

M

)
, define its Hamming ball BHK ({xi}Mi=1) ⊆

({0,1}L
≤M

)
as the set of all possible all possible words (that is, sets) that
result from a K substitution error in {xi}Mi=1. A K substitution
code CH is an ensemble of codewords {xi}Mi=1 ∈

({0,1}
M

)
such

that for any S1, S2 ∈ CH , we have that BHK (S1)∩BHK (S2) = ∅.
The redundancy of a K substitution code CH is defined
as r(CH) =

(
2L

M

)
− log |CH |.

Our code constructions make use of the well-known Reed-
Solomon code, which is capable of correcting k substitutions
in a length n codeword over an alphabet of size q, with 2k log q

bits redundancy, as long as q ≥ n− 1 [14]. Moreover, combi-
natorial numbering maps [9] are used in the robust indexing
algorithm. Specifically, for integers m and n, there exist a
map Fcom : [

(
n
m

)
] →

(
[n]
m

)
that maps an integer d ∈ [

(
n
m

)
] to

a set of m different elements in [n].

III. ROBUST INDEXING FOR CODES OVER SETS

In this section we describe our constructions of codes
correcting substitution errors and prove Theorem 1. Our codes
have redundancy O(K logML), which is order-wise optimal
whenever K is at most O(min{L1/3, L/ logM}).

Since the codewords consist of unordered strings, we as-
sign indexing bits to each string such that order is induced
lexicographically. However, instead of directly assigning the
indices 1, . . . ,M to each string, we embed information into
the indexing bits. In other words, we use the information bits
themselves for the purpose of indexing. This provides greater
efficiency in sending information.

Specifically, for a codeword W = {xi}Mi=1, we choose the
first L′ bits (xi,1, xi,2, . . . , xi,L′), i ∈ [M] in each string xi
as the indexing bits, and encode information in them. Then,
the strings {xi}Mi=1 are sorted according to the lexicographic
order π of the indexing bits (xi,1, xi,2, . . . , xi,L′), i ∈ [M],
where (xπ(i),1, xπ(i),2, . . . , xπ(i),L′) < (xπ(j),1, xπ(j),2, . . . ,
xπ(j),L′) for i < j. Once {xi}Mi=1 are ordered, it suffices
to use a Reed-Solomon code to protect the concatenated
string (xπ(1), . . . ,xπ(M)), and thus the codeword {xi}Mi=1,
from K substitution errors.

One of the key issues with this approach is that the
indexing bits and their lexicographic order can be dis-
rupted by substitution errors. To deal with this, we present
a technique referred to as robust indexing, which protects
the indexing bits from substitution errors. The basic ideas
of robust indexing are as follows: (1) Constructing the in-
dexing bits {(xi,1, xi,2, . . . , xi,L′)}Mi=1 such that the Ham-
ming distance between any two distinct (xi,1, xi,2, . . . , xi,L′)
and (xj,1, xj,2, . . . , xj,L′) is at least 2K + 1, i.e., the
strings {(xi,1, xi,2, . . . , xi,L′)}Mi=1 form a error correcting code
under classic coding theoretic definition. Then, we can identify
which string among {(xi,1, xi,2, . . . , xi,L′)}Mi=1 results in the
erroneous version (x′i,1, x

′
i,2, . . . , x

′
i,L′), by using a minimum

Hamming distance criterion; (2) Using additional redundancy
to protect the set of indexing bits {(xi,1, xi,2, . . . , xi,L′)}Mi=1

from substitution errors. Note that we encode data in the
code {(xi,1, xi,2, . . . , xi,L′)}Mi=1 through different choices of
the code. After substitution errors, two choices of code,
which represents different messages, might result in the same
read {(xi,1, xi,2, . . . , xi,L′)}Mi=1.

Example 1. For K = M = 2 and L = 8, consider two
codes {11111111, 00000000} and {11111111, 00010010}.
Both have minimum Hamming distance greater than 2K+1 =
5 and can result in the same set {11111111, 00000011}
after K = 2 substitutions.

Hence, to recover the indexing
bits (xi,1, xi,2, . . . , xi,L′), i ∈ [M], we need to know

the code {(xi,1, xi,2, . . . , xi,L′)}Mi=1 to which the erroneous
string (x′i,1, x

′
i,2, . . . , x

′
i,L′) is corrected, i ∈ [M].

For an integer `, let 1` be the all 1’s vector of length `.
Define SH as the set of all length L′ codes with cardinality M
and minimum Hamming distance at least 2K + 1, which
contain 1L′ , that is,

SH , {{a1, . . . ,aM} ∈
(
{0, 1}L′

M

)∣∣∣a1 = 1L′ and

dH(ai,aj) ≥ 2K + 1 for every distinct i, j ∈ [M]}.

The following lemma provides a lower bound on the size
of SH and is obtained using counting arguments.

Lemma 1. Let Q =
∑2K
i=0

(
L′

i

)
be the size of a Hamming ball

of radius 2K centered at a vector in {0, 1}L′ . We have that

|SH | ≥ (2L
′ −MQ)M−1

(M − 1)!
. (1)

According to (1), there exists an invertible mapping FHS :

[d (2
L′−MQ)M−1

(M−1)! e] →
({0,1}L′

M

)
, computed in O(2ML′) time

using brute force, that maps an integer d ∈
[
d (2

L′−MQ)M−1

(M−1)! e
]

to a code FHS (d) ∈ SH . A polynomial time algorithm that
computes FHS (d) will be given in the next section. Let us
assume for now that the mapping FHS is given.

For a set S ∈
({0,1}L′
≤M

)
, define the characteristic vec-

tor 1(S) ∈ {0, 1}2L
′

of S by

1(S)i =

{
1 if the binary presentation of i is in S
0 else

.

Notice that the Hamming weight of 1(S) is M for every S ∈({0,1}L′
M

)
. The following lemma is easily proved.

Lemma 2. For S1, S2 ∈
({0,1}L′
≤M

)
, if S1 ∈ BHK (S2),

then dH(1(S1),1(S2)) ≤ 2K, where dH(1(S1),1(S2)) is the
Hamming distance between 1(S1) and 1(S2).

We are ready to present the code construction. We use a
set S ∈ SH as indexing bits and protect the vector 1S from
substitution errors. Note that any two strings in the set S have
Hamming distance at least 2K+1. Hence, knowing the set S,
each string of indexing bits can be extracted from its erroneous
version using a minimum distance decoder, which finds the
unique string in S that is within Hamming distance K from
it. The details are given as follows.

Consider the data d ∈ D to be encoded as a tuple d =

(d1,d2), where d1 ∈ [d (2
L′−MQ)M−1

(M−1)! e] and

d2 ∈ {0, 1}M(L−L′)−4KL′−2KdlogMLe.

Given (d1,d2), the codeword {xi}Mi=1 is generated by the
following procedure.

Encoding:
(1) Let FHS (d1) = {a1, . . . ,aM} ∈ SH such that a1 = 1L′

and the ai’s are sorted in a descending lexicographic
order. Let (xi,1, . . . , xi,L′) = ai, for i ∈ [M].

(2) Let

(x1,L′+1, . . . , x1,L′+4KL′) = RS2K(1({a1, . . . ,aM})),

where RS2K(1({a1, . . . ,aM})) is the redundancy of a
systematic Reed-Solomon code that corrects 2K substi-
tutions in 1({a1, . . . ,aM}).

(3) Place the information bits of d2 in bits

(x1,L′+4KL′+1, . . . , x1,L),

(xM,L′+1, . . . , xM,L−2KdlogMLe); and
(xi,L′+1, . . . , xi,L) for i ∈ [2,M − 1].

(4) Define

m = (x1, . . . ,xM−1, (xM,1, . . . , xM,L−2KdlogMLe))

and let (xM,L−2KdlogMLe+1, . . . , xM,L) = RSK(m),
which is the Reed-Solomon redundancy that corrects K
substitution errors in m. Note that (x1, . . . ,xM) =
(m, RSK(m)) is a K-substitution correcting Reed-
Solomon code.

(5) Output {x1, . . . ,xM}.
Upon receiving the erroneous version1 {x′1, . . . ,x′M}, the
decoding procedure is as follows.

Decoding:
(1) Note that during the encoding process, the redun-

dancy bits that correct the vector 1({ai}Mi=1), i.e.,
the characteristic vector of the set of indexing
bits {(xi,1, . . . , xi,L′)}Mi=1, are stored in x1. Hence we
must first identify the erroneous copy of x1. To this
end, find the unique string x′i0 such that (x′i0,1, . . . ,
x′i0,L′) has at least L′ − K many 1-entries. Since the
strings {xi}Mi=1 have Hamming distance at least 2K + 1,
there is a unique such string, which is the erroneous copy
of {(x1,1, . . . , x1,L′)}Mi=1. Hence x′i0 is an erroneous
copy of x1 and the string

(x′i0,L′+1, . . . , x
′
i0,L′+4KL)

is an erroneous copy of (x1,L′+1, . . . , x1,L′+4KL′) =
RS2K(1({ai}Mi=1)).

(2) According to Lemma 2, the vector
1({(xi,1, . . . , xi,L′)}Mi=1) is within Hamming
distance 2K from the vector 1({(x′i,1, . . . , x′i,L′)}Mi=1).
Hence the Hamming distance between

s1 = (1({(x′i,1, . . . , x′i,L′)}Mi=1),

(x′i0,L′+1, . . . , x
′
i0,L′+4KL)) and

s2 = (1({ai}Mi=1), RS2K(1({ai}Mi=1)))

is at most 2K. Since s2 is a codeword in a Reed-Solomon
code of minimum distance 2K, it can be recovered
from s1 using the Reed-Solomon decoder. Recover d1 =
(FHS)−1({ai}Mi=1).

(3) Since s2 is recovered, the strings {(xi,1, . . . , xi,L′)}Mi=1 =
{ai}Mi=1 are known. Sort {(xi,1, . . . , xi,L′)}Mi=1

1Since the strings {xi}Mi=1 have distance at least 2K+1 with each other,
the strings {x′

i}Mi=1 are different.

lexicographically in descending order. For
each i ∈ [M], find the unique π(i) ∈ [M] such
that dH((x′π(i),1, . . . , x

′
π(i),L′), (xi,1, . . . , xi,L′)) ≤ K

(note that i0 = π(1)). Similar to Step (1), we
conclude that the string x′π(i) is an erroneous copy
of xi, i ∈ [M], since the Hamming distance between xj
and xi is at least 2K + 1 for j 6= i. Hence, the
identities of {(xi,1, . . . , xi,L′)}Mi=1 are determined
from {(x′i,1, . . . , x′i,L′)}Mi=1.

(4) Since x′π(i) is an erroneous copy of xi, i ∈ [M]. it
follows that the concatenation s′ = (x′π(1), . . . ,x

′
π(M))

is an erroneous copy of (x1, . . . ,xM) = (m, RSK(m)),
where m is defined in Step (4) in the encoding procedure.
Therefore, (x1, . . . ,xM) and thus d2 can be recovered
from (x′π(1), . . . ,x

′
π(M)) by using the Reed-Solomon

decoder.
(5) Output (d1,d2).

Therefore, the codeword {xi}Mi=1 can be recovered. The re-
dundancy of the code is

r(C) ≤ log

(
2L

M

)
− logd (2

L′ −MQ)M−1

(M − 1)!
e

− [M(L− L′)− 4KL′ − 2KdlogMLe]
≤ 2K logML+ (12K + 2) logM

+O(K3) +O(K log logML), (2)

The complexity of the encoding/decoding is dominated by that
of decoding each individual index, which is poly(M,L′) by
using brute force, and that of computing the function FHS ,
which as will be discussed in Section IV, is poly(M,L,K).

IV. COMPUTING FHS IN POLYNOMIAL TIME

In this section we present a polynomial time algorithm
to compute the function FHS and thus complete the code
construction in Section III. The result is as follows.

Theorem 3. For integers M,L,K, L′ , 3 logM + 4K2 +
1 and Q =

∑2K
i=0

(
L′

i

)
, there exists an invertible map-

ping FHS :
[(

2L
′
−(M−1)Q+M−1

M−1
)]
→
({0,1}L′

M

)
, computable

in poly(M,L) time, such that for any d ∈ [d (2
L′−MQ)M−1

(M−1)! e],
we have that FHS (d) ∈ SH .

The algorithm has a greedy flavor in the sense that
the strings a1, . . . ,aM are generated sequentially and each
string ai, i ∈ [2,M] is generated bit by bit. The algorithm
consists of two steps. In the first step we map the integer d ∈
[d (2

L′−MQ)M−1

(M−1)! e] into M−1 integers q1, . . . , qM ∈ [2L
′
] such

that q1 = 2L
′

and qi+1 ≤ qi−Q for i ∈ [M−1]. In the second
step, we use qi to generate ai sequentially for i ∈ [2,M]. The
first step is given in the following lemma, which can be proved
using the function Fcom.

Lemma 3. There exists an invertible map FHQ :

[d (2
L′−MQ)M−1

(M−1)! e] → [2L
′
]M , computable in poly(L′,M)

time, that maps and integer d ∈ [d (2
L′−MQ)M−1

(M−1)! e] to an inte-
ger tuple (q1, . . . , qM) such that q1 = 2L

′
and qi+1 ≤ qi −Q

for i ∈ [M − 1].

We now turn to the second step. Given the inte-
gers FHQ (d) = (q1, . . . , qM), we generate the indexing
bits {ai = (xi,1, . . . , xi,L′)}Mi=1 ∈ SH . First, we have
that a1 = 1L′ . The algorithm generates the indexing string ai
sequentially for i ∈ [2,M]. Each indexing string ai is
generated bit by bit in a recursive manner. We first give the
following definition, on which the algorithm is based.

For a set of strings A ⊂ {0, 1}L′ and a string a ∈ {0, 1}`
of length ` ∈ [L′]. Let

NH(a, A)

=
∑

c:c∈A
|{c′ : (c′1, . . . , c

′
`) = a and dH(c′, c) ≤ 2K}|

be the sum of the number of sequences that have prefix a and
have Hamming distance at most 2K from c, over c ∈ A. The
number NH(a, A) has the following properties that will be
useful in our proof. The first property implies that

2L
′−` −NH(a, A) = (2L

′−`−1 −NH((a, 0), A))

+ (2L
′−`−1 −NH((a, 1), A)), (3)

where (a, 0) or (a, 1) is the concatenation of a and a 0
or 1 bit respectively. Eq. (3) enables a recursion to generate
each sequence ai. The second property provides a way to
compute NH(a, A).

Lemma 4. 1) For any sequence a ∈ {0, 1}` of length ` ∈
[L′ − 1] and set A ⊂ {0, 1}L′ , we have

NH(a, A) = NH((a, 0), A) +NH((a, 1), A). (4)

2) For any a ∈ {0, 1}` and A ⊂ {0, 1}L′ , we have

NH(a, A) =
∑

c:c∈A

2K−dH(a,(c1,...,c`))∑
i=0

(
L′ − `
i

)
. (5)

Next, we present the algorithm that takes F JQ(d) =
(q1, . . . , qM) as input and outputs ai such that the decimal
presentation decimal(ai) of ai, i ∈ [M] satisfies

decimal(ai) = qi − 1+∑
`:ai,`=1 and `∈[L′]

NH((ai,1, . . . , ai,`−1, 0), {aj}i−1j=1). (6)

We then show that the sequences ai, i ∈ [M] satisfying (6)
are decodable, i.e., we can recover the tuple (q1, . . . , qM)
from {ai}Mi=1. Finally, we prove that {ai}Mi=1 ∈ SH .

Encoding:
for i ∈ [M], do
q = qi

for ` ∈ [L′], do
if 2L

′−`−NH((ai,1, . . . , ai,`−1, 0), {aj}i−1j=1) ≥ q,
then ai,` = 0.

else

q = q − (2L
′−`−

NH((ai,1, . . . , ai,`−1, 0), {aj}i−1j=1))
ai,` = 1.

end if
end for

end for
return {a1, . . . ,aM}

The generation of ai, i ∈ [M] in the encoding procedure can
be intuitively characterized as walking on a complete binary
tree of L′ + 1 layers. The walk starts at layer 1, i.e., the
root of the binary tree, and ends at layer L′ + 1 at one of
the leaf nodes. At each step, it goes to one of its two child
nodes, which represent the bits 0 and 1 respectively. Each
string ai, i ∈ [M] is represented by the path of a walk.
The paths are chosen so that the newly created ai maintains
Hamming distance of at least 2K from the former aj’s. For
each path ai = (ai,1, . . . , ai,L′) and each layer ` ∈ [L′], assign
the weight w(ai,`) = 2L

′−`−NH((ai,1, . . . , ai,`), {aj}i−1j=1) to
node ai,` in the `-th layer, and the weight w(āi,`) = 2L

′−` −
NH((ai,1, . . . , 1− ai,`), {aj}i−1j=1) to the sibling of node ai,`.
From Eq. (4) we have that w(ai,`) = w(ai,`+1) + w(āi,`+1)
for ` ∈ [L′ − 1]. Moreover, we have that 0 < q ≤ w(ai,`)
after the `-th inner for loop in the i-th outer for loop. This
is formalized in the following lemma, which can be used to
prove that Eq. (6) holds and that {a1, . . . ,aM} ∈ SH .

Lemma 5. After the `-th inner for loop in the i-th outer for
loop in the encoding procedure, ` ∈ [L′], i ∈ [M], we have

0 < q ≤ 2L
′−` −NH((ai,1, . . . , ai,`), {aj}i−1j=1) (7)

At the end of the i-th outer for loop, we have that q = 1.

We now show that the strings {a1, . . . ,aM} generated in
the encoding procedure belong to SH . By Lemma 5, we have

q = 2L
′−L′ −NH(ai, {aj}i−1j=1) = 1,

at the end of each outer for loop in the encoding procedure.
This implies that NH(ai, {aj}i−1j=1) = 0 and thus dH(ai,aj)

for i ∈ [2,M] and j ∈ [i− 1]. Moreover, since q1 = 2L
′
, we

have that a1 = 1L′ . Therefore, {ai}Mi=1 ∈ SH .
Lemma 5 can be used to show the following lemma.

Lemma 6. The output {ai}Mi=1 of the encoding algorithm
satisfies Eq. (6).

Lemma 6 immediately implies a decoding algorithm that
transforms {ai}Mi=1 back to (q1, . . . , qM).

Decoding:
(1) Order the strings {ai}Mi=1 such that a1 > a2 > . . . > aM .
(2) For i ∈ [M], compute qi using Eq. (6).
To show that the decoding is correct, we prove that the
strings a1, . . . ,aM generated in the encoding procedure satisfy

a1 > a2 > . . . > aM . (8)

Then we conclude that the string ai obtained by order-
ing {ai}Mi=1 in Step (1) in the decoding procedure satisfies
Eq. (6). Hence qi, i ∈ [M] can be recovered. Suppose

on the contrary, there exist ai1 > ai2 for some i1 > i2.
Let `∗ be the most significant bit where ai1 and ai2 differ,
i.e., (ai1,1, . . . , ai1,`∗−1) = (ai2,1, . . . , ai2,`∗−1) and ai1,`∗ =
1 and ai2,`∗ = 0. Then according to the if statement in the
encoding procedure, we have that

qi1 −
∑

`:ai1,`=1 and `∈[`∗]

(2L
′−`

−NH((ai1,1, . . . , ai1,`−1, 0), {aj}i1−1j=1)) > 0 and

qi2 −
∑

`:ai1,`=1 and `∈[`∗]

(2L
′−`

−NH((ai1,1, . . . , ai1,`−1, 0), {aj}i2−1j=1)) ≤ 0,

which implies that qi2 − qi1 < (i1 − i2)Q. This contradicts to
the fact that the integers (q1, . . . , qM) = FHQ (d) satisfy qi −
qi+1 > Q for i ∈ [M−1], which implies qi1−qi2 ≥ (i1−i2)Q.
Therefore, Eq. (8) holds.

Since the calculation of NH(a, A) has polynomial com-
plexity, the complexity of the encoding/decoding procedure is
polynomial in M and L′.

V. CONCLUSIONS AND FUTURE WORK

This paper studies coding for channels motivated by DNA
storage systems, in which data are encoded as a set of M
unordered strings of length L. A K substitution error cor-
recting code construction is presented for this channel. Our
code achieves O(K logML) redundancy for small K, which
is order-wise optimal. The robust indexing technique we use
in our code construction can be applied to deletion/insertion
errors. It is interesting to find optimal codes that correct
substitution or deletion/insertion errors for larger range of
parameters K,M , and L.

REFERENCES

[1] Z. Chang, J. Chrisnata, M. F. Ezerman, and H. M. Kiah, “Rates of DNA
string profiles for practical values of read lengths,” IEEE Transactions on
Information Theory, vol. 63, no. 11, pp. 7166–7177, 2017.

[2] K. Cheng, Z. Jin, X. Li and K. Wu, “Deterministic document exchange
protocols, and almost optimal binary codes for edit errors,” IEEE 59th An-
nual Symposium on Foundations of Computer Science (FOCS), pp. 200–
211, 2018.

[3] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital informa-
tion storage in DNA,” Science, no. 6102, pp. 1628–1628, 2012.

[4] Y. Erlich and D. Zielinski, “DNA fountain enables a robust and efficient
storage architecture,” Science, no. 6328, pp. 950–954, 2017.

[5] R. Gabrys, H. M. Kiah, and O. Milenkovic, “Asymmetric Lee distance
codes for DNA-based storage,” IEEE Transactions on Information The-
ory, vol. 63, no. 8, pp. 4982–4995, 2017.

[6] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust, B. Sipos,
and E. Birney, “Towards practical, high-capacity, low-maintenance infor-
mation storage in synthesized DNA,” Nature, no. 7435, pp. 77–80, 2013.

[7] R. Heckel, I. Shomorony, K. Ramchandran, and N. C. David, “Funda-
mental limits of DNA storage systems,” IEEE International Symposium
on Information Theory (ISIT), pp. 3130–3134, 2017.

[8] H. M. Kiah, G. J.Puleo, and O. Milenkovic, “Codes for DNA sequence
profiles,” IEEE Transactions on Information Theory, vol. 62, no. 6,
pp. 3125–3146, 2016.

[9] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 3:
Generating All Combinations and Partitions (Art of Computer Program-
ming), Addison-Wesley Professional, 2005.

[10] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding over
Sets for DNA Storage,” IEEE International Symposium on Information
Theory (ISIT), Vail, USA, 2018

[11] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Anchor-
Based Correction of Substitutions in Indexed Sets,” IEEE International
Symposium on Information Theory (ISIT), Paris, France, 2019

[12] L. Organick, S. D. Ang, Y. J. Chen, R. Lopez, S. Yekhanin,
K. Makarychev, M. Z. Racz, G. Kamath, P. Gopalan, B. Nguyen,
C. Takahashi, S. Newman, H. Y. Parker, C. Rashtchian, G. G. K. Stewart,
R. Carlson, J. Mulligan, D. Carmean, G. Seelig, L. Ceze, and K. Strauss,
“Scaling up DNA data storage and random access retrieval,” bioRxiv,
2017.

[13] N. Raviv, M. Schwartz, and E. Yaakobi, “Rank-Modulation Codes
for DNA Storage with Shotgun Sequencing,” IEEE Transactions on
Information Theory, vol. 65, no. 1, pp. 50–64, 2018.

[14] R. Roth, Introduction to coding theory, Cambridge University Press,
2006.

[15] T. Shinkar, E. Yaakobi, A. Lenz, and A. Wachter-Zeh, “Clustering-
Correcting Codes,” IEEE International Symposium on Information Theory
(ISIT), Paris, France, 2019

[16] I. Shomorony and R. Heckel, “Capacity results for the noisy shuffling
channel,” IEEE International Symposium on Information Theory (ISIT),
Paris, France, 2019

[17] J. Sima, N. Raviv and J. Bruck, “On coding over sliced information,”
IEEE International Symposium on Information Theory (ISIT), Paris,
France, 2019.

[18] J. Sima and J. Bruck, “Optimal k-deletion correcting codes,” IEEE
International Symposium on Information Theory (ISIT), Paris, France,
2019.

[19] W. Song, K. Cai, and K. A. S. Immink, “Sequence-Subset Distance
and Coding for Error Control for DNA-based Data Storage ,” IEEE
International Symposium on Information Theory (ISIT), Paris, France,
2019

[20] S. M. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A
rewritable, random-access DNA-based storage system,” Scientific reports,
vol. 5, p. 14138, 2015.

	Introduction
	Preliminaries
	Robust indexing for codes over sets
	Computing FHS in polynomial time
	Conclusions and Future Work
	References

