
On Coding Over Sliced Information
Jin Sima, Netanel Raviv, and Jehoshua Bruck

Electrical Engineering, California Institute of Technology, U.S.A., {jsima,bruck}@caltech.edu

Abstract—The interest in channel models in which the data is
sent as an unordered set of binary strings has increased lately,
due to emerging applications in DNA storage, among others.
In this paper we analyze the minimal redundancy of binary
codes for this channel under substitution errors, and provide
a code construction for a single substitution that is shown to be
asymptotically optimal up to constants. The surprising result in
this paper is that while the information vector is sliced into a
set of unordered strings, the amount of redundant bits that are
required to correct errors is orderwise equivalent to the amount
required in the classical error correcting paradigm.

I. INTRODUCTION

Data storage in synthetic DNA molecules suggests unprece-
dented advances in density and durability. The interest in DNA
storage has increased dramatically in recent years, following
a few successful prototype implementations [1], [4], [11].
However, due to biochemical restrictions in synthesis (i.e.,
writing) and sequencing (i.e., reading), the underlying channel
model of DNA storage systems is fundamentally different from
its digital-media counterpart.

Typically, the data in a DNA storage system is stored as a
pool of short strings that are dissolved inside a solution, and
consequently, these strings are obtained at the decoder in an
unordered fashion. Furthermore, current technology does not
allow the decoder to count the exact number of appearances
of each string in the solution, but merely to estimate relative
concentrations. These restrictions have re-ignited the interest
in coding over sets, a model that also finds applications in
transmission over asynchronous networks (see Section III).

In this model, the data to be stored is encoded as a set
of M strings of length L over a certain alphabet Σ, for some
integers M and L such that M < |Σ|L; typical values for M
and L are currently within the order of magnitude of 107

and 102, respectively [11], and each individual string is subject
to deletions, insertions, and substitutions.

In the context of DNA storage, after encoding the data as
a set of strings over a four-symbol alphabet, the correspond-
ing DNA molecules are synthesized and dissolved inside a
solution. Then, a chemical process called Polymerase Chain
Reaction (PCR) is applied, which drastically amplifies the
number of copies of each string. In the reading process,
strings whose length is either shorter or longer than L are
discarded, and the remaining ones are clustered according to
their respective edit-distance. Then, a majority vote is held
within each cluster in order to come up with the most likely
origin of the reads in that cluster, and all majority winners are
included in the output set of the decoding algorithm.

The work was supported in part by NSF grants CCF-1816965 and CCF-
1717884 .

One of the caveats of this approach is that errors in synthesis
might cause the PCR process to amplify a string that was
written erroneously, and hence the decoder might include this
erroneous string in the output set. In this context, deletions
and insertions are easier to handle since they result in a string
of length different from1 L. Substitution errors, however, are
more challenging to combat, and are discussed next.

A substitution error that occurs prior to amplification by
PCR can induce either one of two possible error patterns. In
one, the newly created string already exists in the set of strings,
and hence, the decoder will output a set of M−1 strings. In the
other, which is undetectable by counting the size of the output
set, the substitution generates a string which is not equal to
any other string in the set. In this case the output set has the
same size as the error free one. These error patterns, which
are referred to simply as substitutions, are the main focus of
this paper.

A formal definition of the channel model and a summary
of our contributions are given in Section II, and previous
work is discussed in Section III. Upper and lower bounds
on the amount of redundant bits that are required to combat
substitutions are given in Section IV. In Section V we provide
a construction of a code that can correct a single substitution,
which is shown to be optimal up to some constant.

Remark 1. An improvement of the code construction in
Section V, as well as its generalization to multiple substitutions
and many omitted details, are readily available online [6].

Remark 2. It follows from the sphere-packing bound [12,
Sec. 4.2] that without the slicing operation, one must introduce
at least K log(N) redundant bits at the encoder in order to
combat K substitutions in a code of length N . The surprising
result of this paper, is that the slicing operation does not incur
a substantial increase in the amount of redundant bits that are
required to correct K substitutions.

II. PRELIMINARIES AND CONTRIBUTIONS

For integers M and L such that M ≤ 2L we denote
by
({0,1}L

M

)
the family of all subsets of size M of {0, 1}L.

In our channel model, a word is an element W ∈
({0,1}L

M

)
,

and a code C ⊆
({0,1}L

M

)
is a set of words (for clarity, we

refer to words in a given code as codewords). To prevent
ambiguity with classical coding theoretic terms, the elements
in a word W = {x1, . . . ,xM} are referred to as strings.
We emphasize that the indexing in W is merely a notational
convenience, e.g., by the lexicographic order of the strings,
and this information is not available at the decoder.

1As long as the number of insertions is not equal to the number of deletions,
an event that occurs in negligible probability.

A substitution error (substitution, in short), is an operation
that changes the value of a position in a word. Notice that
the result of a substitution is not necessarily an element
of
({0,1}L

M

)
, and might be an element of

({0,1}L
M−1

)
. Similarly,

K substitutions may result in an element of
({0,1}L

T

)
for

some M − K ≤ T ≤ M . This gives rise to the following
definition.

Definition 1. For a word W ∈
({0,1}L

M

)
, a ball BK(W) ⊆⋃M

j=M−K
({0,1}L

j

)
centered at W is the collection of all

subsets of {0, 1}L that can be obtained by at most K-
substitutions in W .

Example 1. For M = 2, L = 3, K = 1, and W =
{001, 011}, we have that

BK(W) = {{001, 101}, {101, 011}, {011}, {000, 011},
{001, 111}, {001}, {001, 010}}.

In this paper, we discuss bounds and constructions of codes
in
({0,1}L

M

)
that can correct K substitutions (K-substitution

codes, for short), for various values of K. The size of a code,
which is denoted by |C|, is the number of codewords (that
is, sets) in it. The redundancy of the code, a quantity that
measures the amount of redundant information that is to be
added to the data to guarantee successful decoding, is defined
as r(C) , log

(
2L

M

)
− log(|C|), where the logarithms are in

base 2.
A code C is used in our channel as follows. First, the data

to be stored (or transmitted) is mapped by a bijective encoding
function to a codeword C ∈ C. This codeword passes through
a channel that might introduce up to K substitutions, and as
a result a word W ∈ BK(C) is obtained at the decoder. In
turn, the decoder applies some decoding function to extract
the original data. The code C is called a K-substitution code
if the decoding process always recovers the original data
successfully. Having settled the channel model, we are now
in a position to formally state our contribution.

Theorem 1. (Main) For any integers M , L, and K such
that M ≤ 2L/(4K+2), there exists an explicit code construction
with redundancy O(K2 log(ML)) ([6, Sec. VI]). For K = 1,
the redundancy of this construction is at most six times larger
than the optimal one (Section V). Furthermore, an improved
construction for K = 1 achieves redundancy which is at most
three times the optimal one ([6, App. C]).

A few auxiliary notions are used throughout the paper,
and are introduced herein. For two strings s, t ∈ {0, 1}L,
the Hamming distance dH(s, t) is the number of entries in
which they differ. To prevent confusion with common terms,
a subset of {0, 1}L is called a vector-code, and the set BHD (s)
of all strings within Hamming distance D or less of a given
string s is called the Hamming ball of radius D centered at s.
The well-known Hamming code is used in the sequel; this is
a [2t−1, 2t−t−1]2 code (i.e., a linear subspace of GF (2)2

t−1

of dimension 2t − t − 1) of minimum distance 3. Generally,
we denote scalars by lower-case letters x, y, . . ., vectors by
bold symbols x,y, . . ., integers by capital letters K,L, . . .,
and [K] , {1, 2, . . . ,K}.

III. PREVIOUS WORK

The channel model in this work has been studied by several
authors in the past. The work of [5] addressed this channel
model under the restriction that individual strings are read in
an error free manner, and some strings might get lost as a result
of random sampling of the DNA pool. In their techniques, the
strings in a codeword are appended with an indexing prefix,
a solution which already incurs Θ(M logM) redundant bits,
or log(e)M − o(1) redundancy [9, Remark 1], and will be
shown to be strictly sub-optimal in our case.

The recent work of [9] addressed this model under substitu-
tions, deletions, and insertions. When discussing substitutions
only, [9] suggested a code construction for K = 1 with 2L+1
bits of redundancy. Furthermore, by using a reduction to
constant Hamming weight vector-codes, it is shown that there
exists a code that can correct e errors in each one of the M
sequences with redundancy Me log(L+ 1).

The work of [7] addressed a similar model, where multisets
are received at the decoder, rather than sets. In addition, errors
in the stored strings are not seen in a fine-grained manner.
That is, any set of errors in an individual string is counted as
a single error, regardless of how many substitutions, insertions,
or deletions it contains. As a result, the specific structure
of {0, 1}L is immaterial, and the problem reduces to decoding
histograms over an alphabet of a certain size.

The specialized reader might suggest the use of fountain
codes, such as the LT [10] codes. However, we stress that
these solutions rely on randomness at much higher redundancy,
whereas this work aims for a deterministic and rigorous
solution at redundancy which is close to optimal.

Finally, we also mention the permutation channel (e.g., [8],
[13]), which is similar to our setting, and yet it is farther away
in spirit than the aforementioned works. In that channel, a
vector over a certain alphabet is transmitted, and its symbols
are received at the decoder under a certain permutation. If
no restriction is applied over the possible permutations, then
this channel reduces to multiset decoding, as in [7]. This
channel is applicable in networks in which different packets
are routed along different paths of varying lengths, and are
obtained in an unordered and possibly erroneous form at the
decoder. Yet, this line of works is less relevant to ours, and
to DNA storage in general, since the specific error pattern in
each “symbol” (which corresponds to a string in {0, 1}L in our
case) is not addressed, and perfect knowledge of the number
of appearances of each “symbol” is assumed.

IV. BOUNDS

In this section we use sphere packing arguments in order to
establish an existence result of codes with low redundancy, and
a lower bound on the redundancy for any single substitution
code. The latter bound demonstrates the asymptotic optimality
of the construction in Section V. Both of these bounds rely
on upper and lower bounds on the size of the ball BK
(Definition 1), which are given below.

Lemma 1. For every word W = {xi}Mi=1 ∈
({0,1}L

M

)
and

every positive integer K ≤ ML, we have that |BK(W)| ≤∑K
`=0

(
ML
`

)
.

Proof. Every word in BK(W) is obtained by flipping the bits
in xi that are indexed by some Ji ⊆ [L], for every i ∈ [M],
where

∑M
i=1 |Ji| ≤ K. Clearly, there are at most

∑K
`=0

(
ML
`

)
ways to choose the index sets {Ji}Mi=1.

A careful application of sphere-packing arguments that
follow from Lemma 1 results in the following [6, Sec. IV.A].

Corollary 1. For every K, M , and L such that M < 2L

and K ≤ ML, there exists a code C ⊆
({0,1}L

M

)
whose

redundancy is at most 2K log(ML) +K log(M).

Notice that the bound in Lemma 1 is tight, e.g., in cases
where dH(xi,xj) ≥ 2K + 1 for all distinct i, j ∈ [M].
This might occur only if M is less than the maximum size
of a K-substitution correcting vector-code, i.e., when M ≤
2L/(

∑K
i=0

(
L
i

)
) [12, Sec. 4.2]. When the minimum Hamming

distance between the strings in a codeword is not large enough,
different substitution errors might result in identical words, and
the size of the ball is smaller than the given upper bound.

Example 2. For L = 4 and M = 2, consider the word W =
{0110,0111}. By flipping either the two underlined symbols,
or the two bold symbols, the word W ′ = {0110, 1110} is
obtained. Hence, different substitution operation might result
in identical words.

However, in some cases it is possible to bound the size
of BK from below by using tools from Fourier analysis of
Boolean functions. In the following it is assumed that M ≤
2(1−ε)L for some 0 < ε < 1, and that K = 1. A word W ∈({0,1}L

M

)
corresponds to a Boolean function fW : {±1}L →

{±1} in a natural way. For x ∈ {0, 1}L let x ∈ {±1}L be
the vector which is obtained from x be replacing every 0
by 1 and every 1 by −1. Then, we define fW (x) = −1
if x ∈ W , and 1 otherwise. Considering the set {±1}L as
the hypercube graph2, the boundary of fW is the set of all
edges {x1,x2} ∈

({±1}L
2

)
in this graph such that fW (x1) 6=

fW (x2). The following lemma is easy to prove, and its proof
is omitted.

Lemma 2. The size of B1(W) is at least as the size of the
boundary of fW .

Notice that the bound in Lemma 2 is tight, e.g., in cases
where the minimum Hamming distance between the strings
of W is at least 2. This implies the tightness of the bound
which is given below in these cases. The following Fourier
analytic claims will aid in proving a lower bound. Let the total
influence of fW be I(fW) ,

∑L
i=1 Prx(fW (x) 6= fW (x⊕i)),

where x⊕i is obtained from x by changing the sign of the i-th
entry, and x ∈ {±1}L is chosen uniformly at random.

Lemma 3. [2, Theorem 2.39] For every function f :
{±1}L → R, we have that I(f) ≥ 2α log(1/α), where α =
α(f) , min{Prx(f(x) = 1),Prx(f(x) = −1)}, and x ∈
{±1}L is chosen uniformly at random.

Lemma 4. For every word W ∈
({0,1}L

M

)
we have

that |B1(W)| ≥ εML.

2The nodes of the hypercube graph of dimension L are identified
by {±1}L, and every two nodes are connected if and only if the Hamming
distance between them is 1.

Proof. Since M ≤ 2(1−ε)L and α = α(fW) = min{(2L −
M)/2L,M/2L}, it follows that α = M/2L for reasonably
large values of L. In addition, since Prx(fW (x) 6= fW (x⊕i))
equals the fraction of dimension i edges that lie on the
boundary of fW ([2, Fact 2.14]), Lemma 2 implies that

I(fW) =
the size of the boundary of fW

2L−1
≤ |B1(W)|

2L−1
.

Therefore, from Lemma 3 we have that |B1(W)| ≥
2α log(1/α) · 2L−1 = M(L− log(M)) ≥ εML.

Corollary 2. For integers L and M and a constant 0 < ε < 1

such that M ≤ 2(1−ε)L, a 1-substitution code C ⊆
({0,1}L

M

)
satisfies that r(C) = log(ML)−O(1).

Proof. According to Lemma 4, every codeword of every C
excludes at least εML other words from belonging to C.
Hence, we have that |C| ≤

(
2L

M

)
/εML, and by the definition

of redundancy, it follows that

r(C) = log

(
2L

M

)
− log(|C|)

≥ log(εML) = log(ML)−O(1).

V. CODES FOR A SINGLE SUBSTITUTION

In this section we present a 1-substitution code construction
that applies whenever M ≤ 2L/6, whose redundancy is at
most 3 logML + 3 logM + O(1). For simplicity of illustra-
tion, we restrict our attention to values of M and L such
that logML+logM ≤M . In the remaining values, a similar
construction of comparable redundancy exists [6].

Theorem 2. For D = {1, . . . ,
(
2L/3−1

M

)3
· (M !)2 ·

23M−3 logML−3 logM−6}, there exist an encoding function E :

D →
({0,1}L

M

)
whose image is a single substitution correcting

code.

The idea behind Theorem 2 is to concatenate the strings in
a codeword C = {xi}Mi=1 in a certain order, so that classic
1-substitution error correction techniques can be applied over
the concatenated string. Since a substitution error may affect
any particular order of the xi’s, we consider the lexicographic
orders of several different parts of the xi’s, instead of the
lexicographic order of the whole strings. Specifically, we
partition the xi’s to three parts, and place distinct strings in
each of them. Since a substitution operation can scramble the
order in at most one part, the correct order will be inferred
by a majority vote, so that classic substitution error correction
can be applied.

Consider a message d ∈ D as a tuple d = (d1, . . . , d6),
where d1 ∈ [

(
2L/3−1

M

)
], d3, d5 ∈ [

(
2L/3−1

M

)
M !], and d2, d4, d6 ∈

[2M−logML−logM−2]. Let F1 (resp. F2) be any injective func-
tion that maps [

(
2L/3−1

M

)
] (resp. [

(
2L/3−1

M

)
M !]) to

({0,1}L/3−1

M

)
(resp.

({0,1}L/3−1

M

)
× SM , where SM is the symmetric group

on M elements). In addition, let

F1(d1) = {a1, . . . ,aM},
F2(d3) = ({b1, . . . ,bM}, σ),

F2(d5) = ({c1, . . . , cM}, π), (1)

...
...

...

String
z

Scram
bled

bits

Scram
bled

bits

x1

...

xM

a1

aM

bσ(1)

bσ(M)

cπ(1)

cπ(M)

L/3 2L/3 L

Fig. 1. An illustration of the encoding scheme in Section V, where the
string z equals (d2, EH(d2), EH(s1)). The strings x1, . . . ,xM are shown
sorted according to their ai entries, and hence the content of column L/3
is z, and columns 2L/3 and L are scrambled. If the strings {xi}Mi=1
were to be sorted by their bi entries, then column 2L/3 would contain
(d4, EH(d4), EH(s2)), and if they were to be sorted by their ci entries,
then column L would contain (d6, EH(d6), EH(s3)).

where ai,bi, ci ∈ {0, 1}L/3−1 for every i ∈ [M], the
permutations σ and π are in SM , and the indexing of {ai}Mi=1,
{bi}Mi=1, and {ci}Mi=1 is lexicographic. Finally, let d2,d4,
and d6 be the binary strings that correspond to d2, d4, and d6,
respectively, and define

s1 = (ai)
M
i=1 ◦ (bσ(i))

M
i=1 ◦ (cπ(i))

M
i=1

s2 = (aσ−1(i))
M
i=1 ◦ (bi)

M
i=1 ◦ (cσ−1π(i))

M
i=1

s3 = (aπ−1(i))
M
i=1 ◦ (bπ−1σ(i))

M
i=1 ◦ (ci)

M
i=1, (2)

where ◦ denotes concatenation.
Without loss of generality assume that there exists an

integer t for which |si| = (L − 3)M = 2t − t − 1 for
all i ∈ [3]. Then, each si can be encoded by using a
systematic [2t − 1, 2t − t − 1]2 Hamming code, by intro-
ducing t redundant bits. That is, the encoding function is
of the form si 7→ (si, EH(si)), where EH(si) are the t
redundant bits, and t ≤ log(ML) + 1. Similarly, we assume
that there exists an integer h for which |di| = 2h − h − 1
for i ∈ {2, 4, 6}, and let EH(di) be the corresponding h
bits of redundancy, that result from encoding di by using
a [2h − 1, 2h − h − 1]2 Hamming code. By the properties
of the Hamming code we have that h ≤ log(M) + 1. The
data d ∈ D is mapped to a codeword C = {x1, . . . ,xM} as
follows (see Fig. 1). First, we place {ai}Mi=1, {bi}Mi=1, and
{ci}Mi=1 in the different thirds of the xi’s, sorted by σ and π.
That is, denoting xi = (xi,1, . . . , xi,L), we define

(xi,1, . . . , xi,L/3−1) = ai,

(xi,L/3+1, . . . , xi,2L/3−1) = bσ(i), and
(xi,2L/3+1, . . . , xi,L−1) = cπ(i). (3)

The remaining bits {xi,L/3}Mi=1, {xi,2L/3}Mi=1, and {xi,L}Mi=1

are used to accommodate the information bits of d2,d4,d6,
and the redundancy bits {EH(si)}3i=1 and {EH(di)}i∈{2,4,6},
in the following manner.

Consider the codeword as an M × L matrix, in
which rows correspond to the xi’s. The remaining bits
{xi,L/3}Mi=1, {xi,2L/3}Mi=1, and {xi,L}Mi=1 correspond to
columns L/3, 2L/3, and L in this matrix. We begin
by sorting the rows only according to the ai values,
i.e., the values in columns 1, . . . , L/3 − 1, and plac-
ing (d2, EH(d2), EH(s1))> in column L/3. Then, we sort by

the bi values, i.e., the values in columns L/3+1, . . . , 2L/3−1,
and place (d4, EH(d4), EH(s2))> in column 2L/3. Finally,
we sort by the ci values, and place (d6, EH(d6), EH(s3))>

in column L.
That is, if the strings {xi}Mi=1 are sorted according to the

content of the bits (xi,1, . . . , xi,L/3−1) = ai, then the top
M−logML logM−2 bits of the (L/3)’th column contain d2,
the middle logM + 1 bits contain EH(d2), and the bot-
tom logML+ 1 bits contain EH(s1). Similarly, if the strings
are sorted according to (xi,L/3+1, . . . , xi,2L/3−1) = bi, then
the top M − logML logM − 2 bits of the (2L/3)’th column
contain d4, the middle logM + 1 bits contain EH(d4), and
the bottom logML+ 1 bits contain EH(s2), and so on. This
concludes the encoding function E of Theorem 2. It can be
readily verified that E is injective since different messages
result in either different ({ai}Mi=1,{bi}Mi=1,{ci}Mi=1) or the
same ({ai}Mi=1,{bi}Mi=1,{ci}Mi=1) with different (d2,d4,d6).
In either case, the resulting codewords {xi}Mi=1 of the two
messages are different.

To verify that the image of E is a 1-substitution code,
observe first that since {ai}Mi=1, {bi}Mi=1, and {ci}Mi=1 are sets,
it follows that any two strings in the same set are distinct.
Hence, according to (3), it follows that dH(xi,xj) ≥ 3 for
every distinct i and j in [M]. Therefore, no 1-substitution error
can cause one xi to be equal to another, and consequently, the
result of a 1-substitution error is always in

({0,1}L
M

)
. In what

follows a decoding algorithm is presented, whose input is a
codeword that was distorted by at most a single substitution,
and its output is d.

Upon receiving a word C ′ = {x′1, . . . ,x′M} ∈ B1(C) for
some codeword C we define

âi = (x′i,1, . . . , x
′
i,L/3−1)

b̂i = (x′τ−1(i),L/3+1, . . . , x
′
τ−1(i),2L/3−1)

ĉi = (x′ρ−1(i),2L/3+1, . . . , x
′
ρ−1(i),L−1), (4)

where τ is the permutation by which {x′i}Mi=1 are sorted
according to their L/3 + 1, . . . , 2L/3 − 1 entries, and ρ
is the permutation by which they are sorted according to
their 2L/3 + 1, . . . , L − 1 entries (we emphasize that τ
and ρ are unrelated to the original π and σ, and those
will be decoded later). Further, when ordering {x′i}Mi=1 by
either the lexicographic ordering, by τ , or by ρ, we obtain
candidates for each one of d2, d4, d6, EH(d2), EH(d4),
EH(d6), EH(s1), EH(s2), and EH(s3), that we similarly
denote with an additional apostrophe3. For example, if we or-
der {x′i}Mi=1 according to τ , then the bottom log(ML)+1 bits
of the (2L/3)-th column are EH(s2)′, the middle logM + 1
bits are EH(d4)′, and the top M − logML− logM − 2 bits
are d′4. Now, let

s′1 = (âi)
M
i=1 ◦ (b̂τ(i))

M
i=1 ◦ (ĉρ(i))

M
i=1

s′2 = (âτ−1(i))
M
i=1 ◦ (b̂i)

M
i=1 ◦ (ĉτ−1ρ(i))

M
i=1

s′3 = (âρ−1(i))
M
i=1 ◦ (b̂ρ−1τ(i))

M
i=1 ◦ (ĉi)

M
i=1

3That is, each one of d′
2, d′

4, etc., is obtained from d2, d4, etc., by at
most a single substitution.

The following lemma shows that at least two of the above s′i
are close in Hamming distance to their encoded counter-
part (si, EH(si)).

Lemma 5. There exist distinct integers k, ` ∈ [3] such that

dH((s′k, EH(sk)′), (sk, EH(sk)) ≤ 1, and
dH((s′`, EH(s`)

′), (s`, EH(sk))) ≤ 1.

Proof. If the substitution did not occur at either of index sets
{1, . . . , L/3−1}, {L/3+1, . . . , 2L/3−1}, or {2L/3 + 1, . . . ,
L− 1} (which correspond to the values of the ai’s, bi’s, and
ci’s, respectively), then the order among the ai’s, bi’s and ci’s
is maintained. That is, we have that s′i = si for i ∈ [3], and
the claim is clear. It remains to show the other cases, and
due to symmetry, assume without loss of generality that the
substitution occurred in one of the ai’s, i.e., in an entry which
is indexed by an integer in {1, . . . , L/3− 1}.

Let A ∈ {0, 1}M×L be a matrix whose rows are the xi’s,
in any order. Let Aleft be the result of ordering the rows of A
according to the lexicographic order of their 1, . . . , L/3 − 1
entries. Similarly, let Amid and Aright be the results of ordering
the rows of A by their L/3 + 1, . . . , 2L/3 − 1 and 2L/3 +
1, . . . , L−1 entries, respectively, and let A′left, A

′
mid, and A′right

be defined analogously with {x′i}Mi=1 instead of {xi}Mi=1.
It is readily verified that there exist permutation matrices P1

and P2 such that Amid = P1Aleft and Aright = P2Aleft.
Moreover, since {bi}Mi=1 = {b̂i}Mi=1, and {ci}Mi=1 = {ĉi}Mi=1,
it follows that A′mid = P1(Aleft +R) and A′right = P2(Aleft +R),
where R ∈ {0, 1}M×L is a matrix of Hamming weight 1; this
clearly implies that A′mid = Amid + P1R and that A′right =
Aright + P2R. Now, notice that s2 results from vectorizing
some submatrix M2 of Amid, and s′2 results from vectorizing
some submatrix M ′2 of A′mid. Moreover, the matrices M2

and M ′2 are taken from their mother matrix by omitting
the same rows and columns, and both vectorizing operations
consider the entries of M2 and M ′2 in the same order.
In addition, the redundancies EH(s2) and EH(s3) can be
identified similarly, and have at most a single substitution
with respect to the corresponding entries in the noiseless
codeword. Therefore, it follows from A′mid = Amid + P1R
that dH((s′2, EH(s′2)), (s2, EH(s2))) ≤ 1. The claim for s3 is
similar.

By applying a Hamming decoder on either one of the si’s,
the decoder obtains possible candidates for {ai}Mi=1, {bi}Mi=1,
and {ci}Mi=1, and by Lemma 5, it follows that these sets of
candidates will coincide in at least two cases. Therefore, the
decoder can apply a majority vote of the candidates from the
decoding of each s′i, and the winning values are {ai}Mi=1,
{bi}Mi=1, and {ci}Mi=1. Having these correct values, the de-
coder can sort {x′i}Mi=1 according to their ai columns, and
deduce the values of σ and π by observing the resulting
permutations in the bi and ci columns, with respect to their
lexicographic ordering. This concludes the decoding of the
values d1, d3, and d5 of the data d.

We are left to extract d2, d4, and d6. To this end, observe that
since the correct values of {ai}Mi=1, {bi}Mi=1, and {ci}Mi=1 are
known at this point, the decoder can extract the true positions
of d2,d4, and d6, as well as their respective redundancy

bits EH(d2), EH(d4), EH(d6). Hence, the decoding algo-
rithm is complete by applying a Hamming decoder.

We now turn to compute the redundancy of the above
code C. Note that there are two sources of redundancy—the
Hamming code redundancy, which is at most 3(logML +
logM + 2) and the fact that the sets {ai}Mi=1, {bi}Mi=1,
and {ci}Mi=1 contain distinct strings. By a straightforward
computation, for 4 ≤M ≤ 2L/6 we have

r(C) = log

(
2L

M

)
− log

((
2L/3−1

M

)3

· (M !)2 · 23(M−logML−logM−2)

)
≤ 12 log e+ 3 logML+ 3 logM + 6 (5)

where step-by-step computation is given in [6, App. B].

Remark 3. This construction can be extended to one that
corrects K substitutions, by partitioning the xi’s to 2K + 1
parts, and following a similar outline. The resulting redun-
dancy is O(K2 log(ML)) [6, Sec. VI].

VI. CONCLUSIONS AND FUTURE WORK

For K = 1, the construction in Section V is a constant away
from the lower bound in Corollary 2. For larger values of K,
a code construction whose redundancy is asymptotically K
times the one in Corollary 1 is given in the full version of this
paper [6]. Closing this gap is an interesting open problem.
Furthermore, it is intriguing to find a lower bound on the
redundancy for larger values of K.

REFERENCES

[1] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital informa-
tion storage in DNA,” Science, no. 6102, pp. 1628–1628, 2012.

[2] R. O’Donnell. Analysis of Boolean functions. Cambridge University
Press, 2014.

[3] R. P. Feynman, “There’s plenty of room at the bottom: An invitation to
enter a new field of physics,” In Handbook of Nanoscience, Engineering,
and Technology, Third Edition, pp. 26–35, CRC Press, 2012.

[4] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust, B. Sipos,
and E. Birney, “Towards practical, high-capacity, low-maintenance infor-
mation storage in synthesized DNA,” Nature, no. 7435, pp. 77–80, 2013.

[5] R. Heckel, I. Shomorony, K. Ramchandran, and N. C. David, “Funda-
mental limits of DNA storage systems,” IEEE International Symposium
on Information Theory (ISIT), pp. 3130–3134, 2017.

[6] J. Sima, N. Raviv, and J. Bruck, “On coding over sliced information,”
arXiv:1809.02716 [cs.IT], 2018.

[7] M. Kovačević and V. Y. F Tan, “Codes in the space of multisets–
Coding for permutation channels with impairments,” IEEE Transactions
on Information Theory, vol. 64, no. 7, pp. 5156–5169, 2018.

[8] M. Langberg, M. Schwartz, and E. Yaakobi, “Coding for the `∞-limited
permutation channel,” IEEE Transactions on Information Theory, vol. 63,
no. 12, pp. 7676–7686, 2017.

[9] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding over sets
for DNA storage,” IEEE International Symposium on Information Theory
(ISIT), pp. 2411–2415, 2018.

[10] M. Luby, “LT codes,” The 43rd Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 2002.

[11] L. Organick et al., “Scaling up DNA data storage and random access
retrieval,” bioRxiv, 2017.

[12] R. Roth, Introduction to coding theory, Cambridge University Press,
2006.

[13] J. M. Walsh and S. Weber, “Capacity region of the permutation chan-
nel,” 46th Annual Allerton Conference on Communication, Control, and
Computing, pp. 646–652, 2008.

[14] S. M. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A
rewritable, random-access DNA-based storage system,” Scientific reports,
vol. 5, p. 14138, 2015.

	Introduction
	Preliminaries and Contributions
	Previous Work
	Bounds
	Codes for a Single Substitution
	Conclusions and Future Work
	References

