Optimal Systematic ¢-Deletion Correcting
Codes

Jin Sima!, Ryan Gabrys? and Jehoshua Bruck!

IDepartment of Electrical Engineering, California Institute of Technology
2Department of Electrical and Computer Engineering, University of California San Diego

Abstract—Systematic deletion correcting codes play an
important role in applications of document exchange. Yet
despite a series of recent advances made in deletion cor-
recting codes, most of them are non-systematic. To the best
of the authors’ knowledge, the only known deterministic
systematic t-deletion correcting code constructions with rate
approaching 1 achieve O(tlog2 n) bits of redundancy for
constant t{, where n is the code length. In this paper, we
propose a systematic t-deletion correcting code construction
that achieves 4tlogn + o(logn) bits of redundancy, which is
asymptotically within a factor of 4 from being optimal. Our
encoding and decoding algorithms have complexity O(n?*1),
which is polynomial for constant t.

I. INTRODUCTION

In the work [14], Levenshtein introduced the prob-
lem of constructing optimal ¢-deletion correcting codes,
defined as a set of length n binary sequences no two
of which share a common length n —t subsequence.
He proved that the optimal redundancy is within the
range tlogn + o(logn) to 2tlogn + o(logn), where log
is base-2 throughout the paper. In addition, he showed
that the Varshamov-Tennengolts (VT) construction [20]

N
{(cl,...,cN) : Y ic; =0 mod (N+1)}, (1)
i=1

forms an optimal single-deletion correcting code.
Though several generalizations [1], [11], [16] of the
VT construction were proposed to correct multiple
deletions, t-deletion correcting codes with rate 1 were
not constructed, until a recent breakthrough [4] that
achieves O(t?logtlogn) redundancy. Following [4], a
series of advances were made. The work of [8] and [19]
constructed two-deletion correcting codes that require
8logn + o(logn) and 7logn + o(logn) bits of redun-
dancy, respectively. In [6], a t-deletion correcting code
with O(tlogn) bits of redundancy was proposed. A t-
deletion correcting code with 8tlogn + o(logn) bits of
redundancy was given in [17].

The problem of constructing t-deletion correcting
codes has a wide range of applications. One of them is
document exchange [7], which is the focus of this paper.

This work was supported in part by NSF grants CCF-1816965 and
CCF-1717884.

In the document exchange setting, two parties Alice and
Bob keep their own files, represented by sequences X
and Y, respectively. The edit distance between X and Y,
measured by the minimum number of deletions, in-
sertions, or substitutions needed to change X into Y,
is upper bounded by f, where t is a constant in this
paper. Alice wants to send the sequence X to Bob by
transmitting a hash of X. The goal is to minimize the size
of the hash, such that Bob can use it and the sequence Y
to recover X. The problem of document exchange is
highly related to that of constructing systematic deletion
correcting codes, since a document exchange scheme
implies a systematic deletion correcting code and vice
versa.

Despite the progress in multiple deletion correcting
codes, none of the constructions above are systematic
and suitable for document exchange settings. For sys-
tematic deletion correcting codes and document ex-
change schemes, when randomized setting is consid-
ered, ie., fading error probability is allowed, docu-
ment exchange algorithms with hash sizes O(tlog?n)
and O(tlogznlog* n)! were presented in [12] and [13],
respectively. The results for randomized settings were
improved to O(t?logn) in [5] and to O(tlogn) in [3].
In [10], a randomized systematic t-deletion correcting
code with O(t?log n) bits of redundancy was presented.
For deterministic settings, the state of the art document
exchange schemes [2], [6], [9] have hash size O(tlog2 n),
which is bounded away from the lower bound tlogn +
o(logn).

The main contribution of this paper is to provide a sys-
tematic ¢-deletion correcting code with 4flogn + o(log n)
bits of redundancy, which is asymptotically within a
factor of 4 from being optimal. The encoding/decoding
complexity of our construction is O(n%*1). We note that
while in this paper we focus on deletion errors, our codes
are capable of correcting r deletions, o insertions, and s
substitutions for any r,0, and s satisfying r+0+s < t.
Hence, it implies a document exchange scheme with
hash size 4tlogn + o(logn).

og™ n is the minimum number of times the logarithm needs to be
iteratively applied before getting n to a result at most 1.

Theorem 1. For any sequence ¢ € {0,1}", there exists a hash
function Hash; : {0,1}" — {0, 1}#logn+o(ogn) " computable
in O(n**1) time, such that {(c, Hashi(c)) : ¢ € {0,1}"}
forms a t-deletion correcting code. The decoding complexity of
the code {(c, Hash(c)) : c € {0,1}"} is O(n'*1).

The key ideas behind our construction generalize and
apply the techniques in our previous works. They are
sketched as follows: (i) generalizing the VT-construction
to correct deletions and substitutions for constrained
sequences, (ii) decomposing a sequence into multiple
versions of it with different resolution levels such that
the version with the lowest resolution is a constrained
sequence, (iii) compressing the hash by using modulo
operations.

In [17] we generalized the VT construction and proved
that the higher order parities > ; ¢;i® mod kn®, e €
[0,2¢] = {0,1,...,2¢t} is a t-deletion correcting hash for
sequences ¢, in which any two 1 entries are separated by
at least t — 1 0 entries. Motivated by this observation, we
define the u-indicator vector 1,(c) € {0,1}" of ¢ element-
wise for binary sequences ¢ and u. Let n and ¢ < n be
the length of ¢ and u respectively, define 14(c) by

Ly(c)i = {(1)

The special cases of 1y(c) when u = (0,1) or u = (1,0)
were considered in [19], where a sequence ¢ is decom-
posed into a (1,0)-indicator vector and a (0, 1)-indicator
vector for t = 2. In this paper we generalize this decom-
position for ¢ > 2. We iteratively generate t versions of ¢
with different levels of resolution. Let I;(c) = ¢ and

Lyt1(c) = 1(1,0v) (Tw(c)),

forwe [t—1] = {1,...,t—1}, where (1,0%) is a sequence
of a 1 entry followed by w 0 entries. The 1 entries
of I,11(c) are also 1 entries of Iy (c), w e [t —1].

Example 1. For t = 3 and ¢ = 10010110100, we have
that I (c) = 11(c) = 10010110100, Ir(c) = 1(;9)(I1(c)) =
10010010100, and that I3(c) = 1gg0)(la(c)) =
10010000100.

ifi<n—{+1and (c¢,..
else.

(v Cl-‘r[—l) =1u,

The nice properties of I,(c) are as follows. (1) Any
two 1 entries in Ii(c) are separated by at least ¢ —
1 0 entries. (2) The vector I(c) is highly constrained
when I;;1(c) is known, as will be discussed in Sec-
tion IV. The first property guarantees that I;(c) can
be protected using higher order parities. The second
property enables a successive decoding algorithm.

Next we define the generalized VT constraint. Define
the integer vectors

n
m® = (191°+2¢,...,)),
j=1

for e e [0,2t?]. For any sequence c € {0,1}", let f(c) be
a 2t? + 1-dimensional vector given by

f(c)e = c-m) mod £2n°t1,

for e € [0,2t2].

The rest of the paper is organized as follows. Section II
describes the key ingredients of the construction and de-
fines the notations. In Section III we prove that f(I;(c))
is a t-deletion correcting hash for the vector I;(c). Sec-
tion IV shows how to correct I (c), when I 1(c) is
known. Section V presents the encoding/decoding al-
gorithms and proves Theorem 1. Finally, Section VI
concludes the paper.

II. PRELIMINARIES

In this section we outline the key ingredients that
are needed in our construction, as well as presenting
notations that will be used throughout the paper. For
any sequence c € {0,1}", define its deletion ball D(c) as
the set of sequences that can be obtained after deleting ¢
bits in ¢. For a non-negative integer i, let B;;(c) be the
set of sequences that can be obtained after deleting f bits
and substituting i bits in c¢. For any integer m, let R; ,,;, be
the set of length m sequences any two 1 entries in which
are separated by at least t —1 0 entries. The following
lemma gives an upper bound on the number of deletions
and substitutions in I (c), caused by t deletions in c.

Lemma 1. For sequences c,c’ € {0,1}", if there exists a sub-
sequence d € Dy(c) N Dy(c’), then Ly(d) € By yp—1)(Iw(€)) N
By y(w—1)(Iw(c)) for w e [t].

Proof. We show that a deletion in ¢ causes at most a
deletion and w — 1 substitutions in I,(c). To this end,
we prove in the following that the deletion of c; causes
a deletion in I, (c) and multiple substitutions that occur
within interval [i — w(w — 1)/2,i — 1] in Iy(c). Since
for any sequence ¢ € {0,1}", we have I,(c) € Rum
and Iy(c) € Rym—1 before and after deleting ¢; in c,
respectively, it follows that there are at most (w —1)/2
substitution errors that change 1 entries to 0 entries and 0
entries to 1 entries respectively. Hence, a deletion in ¢
causes a deletion and at most w — 1 substitutions in I, (c).
Since d € Dy(c), it follows that Iy(d) € By;—1)(c)
Similarly, we have that I(d) € By ;(—1)(c).

We show how a deletion or substitution that occurs
at Ij(c)ij., ij € [n], affects Ij;1(c), j € [L,w —1]. Let i]’-" =
MaX(j [;(c) =1 ¢ be the index of the last 1 entry in [;(c)
before Ij(c);;, and i = ming ;. r(c),=1 ¢ be the index of
the first 1 entry in I;(c) after Ij(c)ij, where it is assumed
that [j(c);, =1 when £ =0or £ =n+1.

1) If if <ij—j—1, then the deletion or substitution
of Ij(c)i]. in [;(c) causes the deletion or substitution
of Ij+1(c),-]. in Ij;1(c) respectively.

2) If i]’." > ij—j and Ij(c)i]. = 1, then the deletion
or substitution of I]-(c)i]. in [j(c) causes a deletion

or at most a substitution of Ij+1(c),~j in Ijy1(c),
respectively.

3) If if >i;—jand Ij(c)i]. = 0, then the substitution
of [j(c);; in Ij(c) causes at most two substitutions
of I C)i]* and Ij+1(c)ij in I]-_H(c). The deletion
of Ij(c)ij i.n Ij‘(c) causes the df‘eletion of I]«H(c)ij‘*ind
the substitution of I;1(c);# in j11(c), when =
i¥ <j+1, and causes only the deletion of I]-+1(c)i].

in Ij;1(c) when i;"* — i;“ =742

In all cases above, a deletion of Ij(c)i]. in Ii(c) causes
a deletion and at most one substitution that occurs in
the range [i; —j,ij] = {ij—jij—j+1,...,i} and a
substitution of Ij(c)i], in Ij(c) causes at most two substi-
tutions that occur in the range [i; — j,i;], for j € [w —1].
Using induction on j we can prove that the deletion

of ¢; = Ij(c); causes one deletion and substitutions
that occur in the range [i— (1+...+w—1),i —1] =
[i—w(w-1)/2,i—1]. O

Given the upper bounds of deletions and substitu-
tions in Lemma 1, the following lemma shows that the
generalization of VT constraints f(x) can be used to
correct these deletions and substitutions for constrained
sequences x € Ry ,. It will be proved in Section IIL

Lemma 2. For any two sequences x,x' € {0,1}", if there
exists a sequence z € Ryu— satisfying z € By y;_1)(x) N
By yt—1)(X'), we have that f(x) # f(X).

After protecting I;(c), the following lemma provides
a hash function that recovers I,(c), w € [t — 1], from
deletions and substitutions, the numbers of which are
upper bounded in Lemma 1, when I, ;1 (c) is known. It
will be proved in Section IV.

Lemma 3. For any two sequences c,c’ € {0,1}", if there
exists a sequence d satisfying d € Di(x) n D¢(c), then there
exists a hash function Hy : {0,1}" — {0,1}2®108" gych
that given d, I,+1(c), and Hy/(c), we can recover that I,(c),
for we [t—1].

The t-deletion correcting hashes described in Lemma 2
and Lemma 3 have sizes larger than O(tlogn). To com-
press the hash functions, we apply the syndrome compres-
sion technique, which is presented in our work [18].

Lemma 4. [c.f. [18]] Let g : {0,1}" — [20((oglognlogn))]
be a labeling function such that for any fixed x € {0,1}"
and any y satisfying y # x and Di(x) n Di(y) # &, we
have that g(x) # g(y). Then there exists an integer & <
2log|Pe(x)|+ologm) sych that for any y satisfying y # x and
Di(x) N Di(y) # &, we have g(x) # g(y) mod «.

Throughout the paper, we interchangeably represent a
binary vector as an integer and vice versa.

ITI. CORRECTING I¢(c)

In this section we prove Lemma 2. Note that by
Lemma 1 we have that I;(z) € Ri,—¢ and that I;(z) €
By p(p—1)(1e(x)) 0 By p(1—1) (It(x')). By virtue of this lemma,
the redundancy f(I¢(c)) can be used to correct I;(c). The
proof of Lemma 2 follows similar arguments to those
in [17], which show that any sequence in R;, can be
protected from ¢ deletions by using higher oder parities.
Here slight changes are made in order to deal with
additional substitutions.

Let § = {01,...,0:} < [n] be a set of deletion indices
and o = {01,...,04;-1)} < [n] be a set of substitution
indices, such that deleting bits (x; : i € §) and sub-
stituting bits (x; : i € ¢) in x result in z. Similarly,
let &' = {d],...,0;} = [n] and o = {03,..., 0,41} < [n]
be two sets such that deleting bits (x/ : i € ¢’) and
substituting bits (x} : i € ¢) in X’ result in z. Let y and y’
be the sequences obtained by substituting bits (x; : i € 0)
in x and substituting bits (x/ : i € ¢’) in X/, respectively.
Then we have that z € Di(y) n Di(y’). Moreover, the
sequence z can be obtained by deleting (y; : i € J) from y
or deleting (v} :i€ d’) from y’.

We now compute the difference x-m(®) —x’-m(®) and
show that it cannot be 0 for all e € [0,2t?] unless x = x'.
Following the same steps as in [17], let A = {i : y; = 1}
and A’ = {i : y; = 1} be indices of 1 entries in y
and y’ respectively. Let S = An d and S; = A’ n &'be
indices of the 1 entries, after deleting which in y and y’,
respectively, we have z. Then, the sets S{ = [n]\S;
and S5 = [n]\S; are indices of the 1 entries that are not
deleted in y and y’ respectively. We have that

4 14

ym -y m@ =33 - 30

leA i=1 leN i=1

= D (S1n [i,n]| + 18 ~ [i,n]|
i=1
—[S2n [in][=[Sy A [n]))i (2)

Sort all elements in sets §,8’, 0, and ¢’ by p; < p» <

. < pyp. Let po = 0 and p,p,; = n. The sets S;
and S, satisfy the following properties, the proof of
which follows the same steps as in [17].

1) —1<[S{n[i,n]|—=|S5n[i,n]| <1forie[n]

2) For each interval (pj, pj41] = {pj+1,...,pj+1}, j €
[0,2t%], we have either |S§ N [i,n]| — |SS n [1,n]| <0
for all i € (pj, pj11] or |S{ N [i,n]| —[S5n[i,n]] =0
forallie (p], pj+1]'

Letthesets S3;=Ano={i:y;=1,ico}and Sy = A n
o/ = {i:y} =1,i e o'} be the indices of substitutions that
flip 0 bits in x and X/, in order to get y and y’ respectively.
Let S5 = 0\Ss ={i:y; =0,ie o}, and Sg = o\Sy = {i :
yi=0,i¢€ o'} be the indices of substitutions that flip 1
bits in x and X/, to get y and y’, respectively. Then,

-m® —x . m®

= y m(e) _y, . m(e) + Z mée) — Z mgg)
LeSs (€S
(T m - N
LES3 LeSy
22 Pj+1
=30 (IS5 A linll - IS5 il < kie, @)
j=0i=p;+1

where k; = |S1 n [i,n]| — [S2 n [i,n]| +|S5 n [i,n]| — |S3 N
[i,n]| + |S4 n [i,n]] — |S¢ n [i,n]| for i € [n]. Note that
for any interval (pj,pji1l, j € [0,2t?], the number k;
is constant for all i € (pj, pj1]- Let s; = |S] n [i,n]| —
|S5 n [i,n]| + ki, then it follows from Property (1) and
Property (2) that s; is either negative or non-negative for
all i € (pj, pj+1] for each j e [0, 2¢2].

Next, we show that x-m(®) —x’-m(®) cannot be zero for
all e € [0,2t*] when x # x'. Otherwise, define a vector v =
(00, ..., vpp) € {~1,1}2*+1 by

Y — —1, if s; <0 for some i € (p;, pj41]
] 1, else. '

and a (22 +1) x (2> + 1) matrix A by Aej =
Zl pit |s;|i for e,] e [0,2t?]. Then according to Eq 3),

we have that Z] 0Acjvj =0, e€ [0,2t2], if x-m(© —
x'-m() = 0 for all e € [0,2¢2]. This implies the linear
equation Av = 0 has a solution v with no 0 entry. The
remaining steps are the same as in [17]. Let ji,...,jo
be the indices of non-zero columns of A, and B be the
submatrix of A by selecting the intersection of the first Q
rows and the non-zero columns of A. Then the linear
equation B(Ujl,...,va) = 0 has a non-zero solution,
which is impossible since by multi-linearity of the de-
terminant, we can prove that the determinant |B| > 0.
Therefore, x- m©) —x'-m(©) = 0 for e € [0,2¢2] only
when A is a zero matrix, which implies that

= [STn i, n]| =S5 [i,n][+ ki
=|{i:x;=1}n[in]|-|{i:x;=1}n[in]| =0,

for i € [n]. Then, {i: x; =1} = {i: x; = 1} and thus x =
x'.

Finally, we show that if f(c¢) = f(¢/), then x-

m® —x .-m® = 0 for e € [0,2t2]. Since z €
By y(1—1)(x) 0 Byyp—1)(X'), it follows that (z;,...,zy—t) €
By s(t—1)((xi, ., Xn)) ﬁBt,t(t—l)((xfr- .., xy)) forie [n—]
Hence, we have that —t> < [{i : x; = 1} n[i,n]| — |{i : x| =

1} A [i,n]] < t?, and that

x-m® —x' . m)| < 2ptl,

Therefore, if f(c) = f(c/), we have that x - m(®) —x' .
m(®) = 0mod ?n"*1, which implies that x - m(®) — x’ -
m(® =0, for e € [0,212].

IV. CORRECTING Iy (c) GIVEN I, 1(c)

In this section we prove Lemma 3. The idea is to
notice that given I41(c), the sequence Iy(c) can be
determined by the first 1 entry in I, (c) after each 1 entry
in Iy41(c), w € [t — 1]. Specifically, let

(w+1 _w+1

w—+1
oy e,)

n/

be the indices of the 1 entries in I, 1(c) such that 77}’ <

7'[3’+l <7 ,H Let

T =min{j:j > 7", Iy(c)j =1 or j=n+1}

for i € [0,n'], where ﬂf”H = 0 when i = 0. We have the
following proposition.

Proposition 1. The sequence Iy(c) can be determined
l[ay (1]erl g’“,...,nz’,ﬂ) and (t’, 7, ..., %), for w €
t—

Proof. Note that the 1 entries of I,(c) in the inter-

val (m"*!, %] are spaced evenly with distance w in
the interval [7}", n;‘:;l], forie [0,n'], where 71“:51 =n+1
if i = n’. Otherwise there is an additional one entry
in Iy 1(c) in the interval (nf”“,nfﬁl) {4
1,.. nl“jjl — 1}, which contradicts to the definition
of (w“,...,nff,“). O

From Proposition 1, it suffices to protect the in-
dices (7’,..., 7)), in order to recover Iy(c). For w €

[t—1] let
= RSop (70

Hy(c)
where RSy (19 — 7y ™, ..., 78 — 7%T1)) is the redun-
dancy of the Reed- Solomon code that corrects 2tw sub-

stitution errors in the sequence (73 — 7'(8”“,...,’(}71‘5 —

7%t with entries ¥ — ™1, i € [0,n]. The size
of Hy/(c) is at most 4fwlogn bits.

In the following we present the decoding procedure
that recovers I,(c), given d € D(c), Iy+1(c), and Hy(c),

for any w e [t —1].

w+1

-yt T — 9y,

nl

1) Initialization: Let a € [n]" ™! be a vector, where n’
is known given I;,;1(c).

2) Step 1: For each i € [0,n' — 1], if there exist two

+1 +1 +1 +1
numbers p’" € [mT —t, "] and piiYt €
(74t —t, 74"l such that Iw+](d)pw+l =
+1 +1 +1 +1

Iw+1(d)pl;:+ll =Tland pi" —pi’" = i —
let kY = min.>pz_u+l,1w(d)_=1] be the first 1 entry

in I,(d) after Iw(d)pw“, where 15 (d); = 1 when j =
n—t+1 Leta; :kf"—pf‘). Else let a; = 0.
3) Step 2: Apply the Reed-Solomon decoder on a to
recover (73" — 7'(8"“,.. ST — nw“) Recover (1,
., Ty), and Iy(c) according to Proposition 1.
4) Step 3: Output I(c).
We now show that the above procedure decodes I (c)
correctly, w € [t —1]. According to Lemma 1, The

sequence I (d) can be obtained from I, (c) after t dele-
tions and at most t(w — 1) substitutions. Note that for

each i € [0,n'], we have that 2; = T — 7", if no dele-
tion or substitution occurs in the 1nterval [+,]

in Iy(c), where nf‘:;l =nif i = n. Smce a dele-
tion or a substitution occurs in at most two adjacent

: w+1l _w+1 w+l _w+1 :
intervals [, 2] and [, 5], t deletions

and t(w — 1) substitutions cause at most 2tw symbol
errors a; # T\’ — 7rlw+1 in a. Hence the sequence (7" —
et ST = 7, and thus (1¢,...,79) can be re-

covered given Hw(). Finally, according to Proposition 1,
the sequence I(c) can be recovered, w € [t —1].

The complexities for computing Hy(c) and decod-
ing I, (c) are dominated by encoding and decoding the
Reed-Solomon code and are polynomial.

V. ENCODING/DECODING

In this section we describe the encoding and decoding
procedures and prove Theorem 1. For any ¢ € {0,1}",
define the function

8(c) = (f(I(c)), Hi(c), Ha(c), ..., Hy—1(c)).

We first show that g(c) is a t-deletion correcting labeling
for c. For any length n —t subsequence d of ¢, according
to Lemma 1, we have that L,(d) € Byq—_1)(lw(c))
for w € [t]. In particular, we have that [;(d) €
By y(t—1)(It(c)). Since I(d) € Rin—t, it follows from
Lemma 2 that f(Ii(c) # f(I(c)) for any ¢ satisfy-
ing I;(d) € Bt,t(t—1)(1w(cl))~ Hence, the sequence I(c)
can be recovered, given f(l;(c)) and d. According to
Lemma 3, every sequence Iy(c) can be recovered us-
ing Hy(c), Iy+1(c), and d. Hence, after knowing I;(c),
the sequence ¢ = I;(c) can be recovered by successively
decoding I(c), from w =t —1to w = 1.

The size of g(c) is R = [(? + 1)(2£2 + 1) + 2£3(t —
1)] logn + o(logn), which is greater than O(tlogn).
By applying Lemma 4, there exists an integer a €
210g|Dt g,-i-o(logn) _ [22tlogn+o(logn)] such that g() #
g(c) mod « for any ¢’ € Dy(c). Let

8c(e) = (g(e), a).

Then gc(c) is a t-deletion correcting hash for ¢ of
size Ny = 4tlogn + o(logn). Let

(8c(c), Repri1(gc(8e(c)))),

where Repi1(gc(gc(c))) is the t+ 1 fold repetition
of gc(gc(c)), of length N, = 4tlogN; +o(logNy) =
4t(t + 1) loglogn + o(log n). The size of Hash;(c) is Ny +
N, = 4tlogn + o(logn). We now show that (c, Hash;(c))
is a t-deletion correcting code. For any length n +
N1 + N, — t subsequence z of (c, Hashi(c)), we have
that (Z,4N,+1,- -+, Znt N, +N,—t) is a length Np —t sub-
sequence of Rep;11(gc(gc(c)))), which is a t-deletion
correcting code. Therefore g.(gc(c)) can be recovered.

Hash(c) =

In addition, (z;41,...,Zn4N,—t) is a length Nj —t subse-
quence of g.(c). Since g.(gc(c)) is a t-deletion correcting
hash of gc(c), the hash g.(c) can be recovered. Finally,
note that (zj,...,z4—¢) is a length n —t subsequence
of n, we can use gc(c) to recover c¢. The decoding of ¢
from g.(c) is done using brute force, over all sequences ¢’
that satisfy d € D;(c’). The computing of g.(c) is done by
brute force, over sequences ¢’ € Dy(c). Hence the encod-
ing and decoding complexities are O(n?*1) and O(n*1)
respectively.

VI. CONCLUSIONS AND FUTURE WORK

Motivated by the applications in document exchange,
we construct systematic t-deletion correcting codes that
achieve 4tlogn + o(logn) bits of redundancy, which is
optimal up to a constant. Our codes are capable of
correcting up to t deletion, insertion, and substitution
errors, and thus provide a document exchange scheme.
Our construction has encoding/decoding complexity
polynomial in n but exponential in ¢, which works
when t is a constant. It is intriguing, yet challenging,
to come up with encoding/decoding algorithms poly-
nomial in both #n and t.

REFERENCES

[1] K. A. Abdel-Ghaffar, F. Paluncic, H. C. Ferreira and W. A. Clarke,
“On Helberg’s generalization of the Levenshtein code for multiple
deletion/insertion error correction,” IEEE Trans. on Inf. Th., vol. 58,
no. 3, pp. 1804-1808, 2012.

[2] D. Belazzougui, “Efficient deterministic single round document
exchange for edit distance,” arXiv:1511.09229, 2015.

[3] D.Belazzougui and Q Zhang, “Edit distance: Sketching, streaming,
and document exchange,” 2016 IEEE 57th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 51-60, 2016.

[4] J. Brakensiek, V. Guruswami and S. Zbarsky, “Efficient low-
redundancy codes for correcting multiple deletions,” IEEE Trans.
on Inf. Th., vol. 64, no. 5, pp. 3403-3410, 2018.

[5] D. Chakraborty, E. Goldenberg and M. Koucky, “Low distor-
tion embedding from edit to Hamming distance using coupling,”
Electronic Colloquium on Computational Complexity (ECCC), vol. 22,
no. 111, 2015.

[6] K. Cheng, Z. Jin, X. Li and K. Wu, “Deterministic document
exchange protocols, and almost optimal binary codes for edit
errors,” IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 200211, 2018.

[7] G. Cormode, M. Paterson, S.C. Sahinalp and U. Vishkin “Com-
munication complexity of document exchange,” Proceedings of
the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 197-206, 2000.

[8] R. Gabrys and F. Sala, “Codes correcting two deletions,” IEEE
Trans. on Inf. Th., vol. 65, no. 2, pp. 965-974, Feb. 2019.

[9] B. Haeupler, “Optimal document exchange and new codes for
small number of insertions and deletions,” IEEE 60th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 334-347,
2019.

[10] SK. Hanna and S. El Rouayheb, “Guess & check codes for
deletions, insertions, and synchronization,” IEEE Trans. on Inf. Th.,
vol. 65, no. 1, pp. 3-15, Jan. 2019.

[11] A.S. Helberg and H. C. Ferreira, “On multiple insertion/deletion
correcting codes,” IEEE Trans. on Inf. Th., vol. 48, no. 1, pp. 305-308,
2002.

[12] U. Irmak, S. Mihaylov and T. Suel, “Improved single-round
protocols for remote file synchronization,” Proceedings IEEE 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), vol. 3, pp. 1665-1676, 2005.

[13] H. Jowhari, “Efficient communication protocols for deciding edit
distance,” European Symposium on Algorithms, pp. 648-658, 2012.

[14] V. L Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Soviet physics doklady, vol. 10, no. §,
pp. 707-710, 1966.

[15] M. Mitzenmacher, “A survey of results for deletion channels and
related synchronization channels,” Probability Surveys, vol. 6, pp. 1-
33, 2009.

[16] F. Paluncic, K. A. Abdel-Ghaffar, H. C. Ferreira and W. A. Clarke,
“A multiple insertion/deletion correcting code for run-length lim-
ited sequences,” IEEE Trans. on Inf. Th., vol. 58, no. 3, pp. 1809-1824,
2012.

[17] J. Sima and J. Bruck, “Optimal k-deletion correcting codes,”
arXiv:1910.12247, 2019.

[18] J. Sima, R. Gabrys and J. Bruck, “Syndrome compression for
optimal redundancy codes,” proc. ISIT, 2020.

[19] J. Sima, N. Raviv, and J. Bruck, “Two deletion correcting codes
from indicator vectors,” in IEEE Transactions on Information Theory,
vol. 66, no. 4, pp. 2375-2391, 2020.

[20] R. R. Varshamov and G. M. Tenengolts, “Codes which correct
single asymmetric errors,” Autom. Remote Control, vol. 26, no. 2,
pp- 286-290, 1965.

	Introduction
	Preliminaries
	Correcting It(c)
	Correcting Iw(c) given Iw+1(c)
	Encoding/Decoding
	Conclusions and Future Work
	References

