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Abstract—Systematic deletion correcting codes play an
important role in applications of document exchange. Yet
despite a series of recent advances made in deletion cor-
recting codes, most of them are non-systematic. To the best
of the authors’ knowledge, the only known deterministic
systematic t-deletion correcting code constructions with rate
approaching 1 achieve Opt log2 nq bits of redundancy for
constant t, where n is the code length. In this paper, we
propose a systematic t-deletion correcting code construction
that achieves 4t log n` oplog nq bits of redundancy, which is
asymptotically within a factor of 4 from being optimal. Our
encoding and decoding algorithms have complexity Opn2t`1q,
which is polynomial for constant t.

I. INTRODUCTION

In the work [14], Levenshtein introduced the prob-
lem of constructing optimal t-deletion correcting codes,
defined as a set of length n binary sequences no two
of which share a common length n ´ t subsequence.
He proved that the optimal redundancy is within the
range t log n ` oplog nq to 2t log n ` oplog nq, where log
is base-2 throughout the paper. In addition, he showed
that the Varshamov-Tennengolts (VT) construction [20]

#

pc1, . . . , cNq :
N

ÿ

i“1

ici ” 0 mod pN ` 1q

+

, (1)

forms an optimal single-deletion correcting code.
Though several generalizations [1], [11], [16] of the
VT construction were proposed to correct multiple
deletions, t-deletion correcting codes with rate 1 were
not constructed, until a recent breakthrough [4] that
achieves Opt2 log t log nq redundancy. Following [4], a
series of advances were made. The work of [8] and [19]
constructed two-deletion correcting codes that require
8 log n ` oplog nq and 7 log n ` oplog nq bits of redun-
dancy, respectively. In [6], a t-deletion correcting code
with Opt log nq bits of redundancy was proposed. A t-
deletion correcting code with 8t log n ` oplog nq bits of
redundancy was given in [17].

The problem of constructing t-deletion correcting
codes has a wide range of applications. One of them is
document exchange [7], which is the focus of this paper.

This work was supported in part by NSF grants CCF-1816965 and
CCF-1717884.

In the document exchange setting, two parties Alice and
Bob keep their own files, represented by sequences X
and Y, respectively. The edit distance between X and Y,
measured by the minimum number of deletions, in-
sertions, or substitutions needed to change X into Y,
is upper bounded by t, where t is a constant in this
paper. Alice wants to send the sequence X to Bob by
transmitting a hash of X. The goal is to minimize the size
of the hash, such that Bob can use it and the sequence Y
to recover X. The problem of document exchange is
highly related to that of constructing systematic deletion
correcting codes, since a document exchange scheme
implies a systematic deletion correcting code and vice
versa.

Despite the progress in multiple deletion correcting
codes, none of the constructions above are systematic
and suitable for document exchange settings. For sys-
tematic deletion correcting codes and document ex-
change schemes, when randomized setting is consid-
ered, i.e., fading error probability is allowed, docu-
ment exchange algorithms with hash sizes Opt log2 nq
and Opt log2 n log˚ nq1 were presented in [12] and [13],
respectively. The results for randomized settings were
improved to Opt2 log nq in [5] and to Opt log nq in [3].
In [10], a randomized systematic t-deletion correcting
code with Opt2 log nq bits of redundancy was presented.
For deterministic settings, the state of the art document
exchange schemes [2], [6], [9] have hash size Opt log2 nq,
which is bounded away from the lower bound t log n`
oplog nq.

The main contribution of this paper is to provide a sys-
tematic t-deletion correcting code with 4t log n` oplog nq
bits of redundancy, which is asymptotically within a
factor of 4 from being optimal. The encoding/decoding
complexity of our construction is Opn2t`1q. We note that
while in this paper we focus on deletion errors, our codes
are capable of correcting r deletions, o insertions, and s
substitutions for any r, o, and s satisfying r ` o ` s ď t.
Hence, it implies a document exchange scheme with
hash size 4t log n` oplog nq.

1log˚ n is the minimum number of times the logarithm needs to be
iteratively applied before getting n to a result at most 1.



Theorem 1. For any sequence c P t0, 1un, there exists a hash
function Hasht : t0, 1un Ñ t0, 1u4t log n`oplog nq, computable
in Opn2t`1q time, such that tpc, Hashtpcqq : c P t0, 1unu

forms a t-deletion correcting code. The decoding complexity of
the code tpc, Hashtpcqq : c P t0, 1unu is Opnt`1q.

The key ideas behind our construction generalize and
apply the techniques in our previous works. They are
sketched as follows: (i) generalizing the VT-construction
to correct deletions and substitutions for constrained
sequences, (ii) decomposing a sequence into multiple
versions of it with different resolution levels such that
the version with the lowest resolution is a constrained
sequence, (iii) compressing the hash by using modulo
operations.

In [17] we generalized the VT construction and proved
that the higher order parities

řn
i“1 ciie mod kne, e P

r0, 2ts fi t0, 1, . . . , 2tu is a t-deletion correcting hash for
sequences c, in which any two 1 entries are separated by
at least t´ 1 0 entries. Motivated by this observation, we
define the u-indicator vector 1upcq P t0, 1un of c element-
wise for binary sequences c and u. Let n and ` ď n be
the length of c and u respectively, define 1upcq by

1upcqi “

#

1, if i ď n´ `` 1 and pci, . . . , ci``´1q “ u,
0, else.

The special cases of 1upcq when u “ p0, 1q or u “ p1, 0q
were considered in [19], where a sequence c is decom-
posed into a p1, 0q-indicator vector and a p0, 1q-indicator
vector for t “ 2. In this paper we generalize this decom-
position for t ą 2. We iteratively generate t versions of c
with different levels of resolution. Let I1pcq “ c and

Iw`1pcq “ 1p1,0wqpIwpcqq,

for w P rt´ 1s fi t1, . . . , t´ 1u, where p1, 0wq is a sequence
of a 1 entry followed by w 0 entries. The 1 entries
of Iw`1pcq are also 1 entries of Iwpcq, w P rt´ 1s.

Example 1. For t “ 3 and c “ 10010110100, we have
that I1pcq “ 11pcq “ 10010110100, I2pcq “ 1p1,0qpI1pcqq “
10010010100, and that I3pcq “ 1p1,0,0qpI2pcqq “

10010000100.

The nice properties of Iwpcq are as follows. (1) Any
two 1 entries in Itpcq are separated by at least t ´
1 0 entries. (2) The vector Iwpcq is highly constrained
when Iw`1pcq is known, as will be discussed in Sec-
tion IV. The first property guarantees that Itpcq can
be protected using higher order parities. The second
property enables a successive decoding algorithm.

Next we define the generalized VT constraint. Define
the integer vectors

mpeq fi p1e, 1e ` 2e, . . . ,
n

ÿ

j“1

jeq,

for e P r0, 2t2s. For any sequence c P t0, 1un, let f pcq be
a 2t2 ` 1-dimensional vector given by

f pcqe “ c ¨mpeq mod t2ne`1,

for e P r0, 2t2s.
The rest of the paper is organized as follows. Section II

describes the key ingredients of the construction and de-
fines the notations. In Section III we prove that f pIwpcqq
is a t-deletion correcting hash for the vector Itpcq. Sec-
tion IV shows how to correct Iwpcq, when Iw`1pcq is
known. Section V presents the encoding/decoding al-
gorithms and proves Theorem 1. Finally, Section VI
concludes the paper.

II. PRELIMINARIES

In this section we outline the key ingredients that
are needed in our construction, as well as presenting
notations that will be used throughout the paper. For
any sequence c P t0, 1un, define its deletion ball Dtpcq as
the set of sequences that can be obtained after deleting t
bits in c. For a non-negative integer i, let Bt,ipcq be the
set of sequences that can be obtained after deleting t bits
and substituting i bits in c. For any integer m, let Rt,m be
the set of length m sequences any two 1 entries in which
are separated by at least t ´ 1 0 entries. The following
lemma gives an upper bound on the number of deletions
and substitutions in Iwpcq, caused by t deletions in c.

Lemma 1. For sequences c, c1 P t0, 1un, if there exists a sub-
sequence d P DtpcqXDtpc1q, then Iwpdq P Bt,tpw´1qpIwpcqqX
Bt,tpw´1qpIwpc1qq for w P rts.

Proof. We show that a deletion in c causes at most a
deletion and w ´ 1 substitutions in Iwpcq. To this end,
we prove in the following that the deletion of ci causes
a deletion in Iwpcq and multiple substitutions that occur
within interval ri ´ wpw ´ 1q{2, i ´ 1s in Iwpcq. Since
for any sequence c P t0, 1um, we have Iwpcq P Rw,m
and Iwpcq P Rw,m´1 before and after deleting ci in c,
respectively, it follows that there are at most pw´ 1q{2
substitution errors that change 1 entries to 0 entries and 0
entries to 1 entries respectively. Hence, a deletion in c
causes a deletion and at most w´1 substitutions in Iwpcq.
Since d P Dtpcq, it follows that Iwpdq P Bt,tpw´1qpcq.
Similarly, we have that Iwpdq P Bt,tpw´1qpc

1q.
We show how a deletion or substitution that occurs

at Ijpcqij , ij P rns, affects Ij`1pcq, j P r1, w´ 1s. Let i˚j “
max`ăij ,Ijpcq`“1 ` be the index of the last 1 entry in Ijpcq
before Ijpcqij , and i˚˚j “ min`ąij ,Ijpcq`“1 ` be the index of
the first 1 entry in Ijpcq after Ijpcqij , where it is assumed
that Ijpcq` “ 1 when ` “ 0 or ` “ n` 1.

1) If i˚j ď ij ´ j´ 1, then the deletion or substitution
of Ijpcqij in Ijpcq causes the deletion or substitution
of Ij`1pcqij in Ij`1pcq respectively.

2) If i˚j ě ij ´ j and Ijpcqij “ 1, then the deletion
or substitution of Ijpcqij in Ijpcq causes a deletion



or at most a substitution of Ij`1pcqij in Ij`1pcq,
respectively.

3) If i˚j ě ij ´ j and Ijpcqij “ 0, then the substitution
of Ijpcqij in Ijpcq causes at most two substitutions
of Ij`1pcqi˚j and Ij`1pcqij in Ij`1pcq. The deletion
of Ijpcqij in Ijpcq causes the deletion of Ij`1pcqij and
the substitution of Ij`1pcqi˚j in Ij`1pcq, when i˚˚j ´

i˚j ď j` 1, and causes only the deletion of Ij`1pcqij

in Ij`1pcq when i˚˚j ´ i˚j ě j` 2.

In all cases above, a deletion of Ijpcqij in Ijpcq causes
a deletion and at most one substitution that occurs in
the range rij ´ j, ijs “ tij ´ j, ij ´ j ` 1, . . . , iju, and a
substitution of Ijpcqij in Ijpcq causes at most two substi-
tutions that occur in the range rij ´ j, ijs, for j P rw´ 1s.
Using induction on j we can prove that the deletion
of ci “ I1pcqi causes one deletion and substitutions
that occur in the range ri ´ p1 ` . . . ` w ´ 1q, i ´ 1s “
ri´wpw´ 1q{2, i´ 1s.

Given the upper bounds of deletions and substitu-
tions in Lemma 1, the following lemma shows that the
generalization of VT constraints f pxq can be used to
correct these deletions and substitutions for constrained
sequences x P Rt,n. It will be proved in Section III.

Lemma 2. For any two sequences x, x1 P t0, 1un, if there
exists a sequence z P Rt,n´t satisfying z P Bt,tpt´1qpxq X
Bt,tpt´1qpx

1q, we have that f pxq ‰ f px1q.

After protecting Itpcq, the following lemma provides
a hash function that recovers Iwpcq, w P rt ´ 1s, from
deletions and substitutions, the numbers of which are
upper bounded in Lemma 1, when Iw`1pcq is known. It
will be proved in Section IV.

Lemma 3. For any two sequences c, c1 P t0, 1un, if there
exists a sequence d satisfying d P Dtpxq XDtpc1q, then there
exists a hash function Hw : t0, 1un Ñ t0, 1u2tw log n, such
that given d, Iw`1pcq, and Hwpcq, we can recover that Iwpcq,
for w P rt´ 1s.

The t-deletion correcting hashes described in Lemma 2
and Lemma 3 have sizes larger than Opt log nq. To com-
press the hash functions, we apply the syndrome compres-
sion technique, which is presented in our work [18].

Lemma 4. [c.f. [18]] Let g : t0, 1un Ñ r2opplog log n¨log nqqs

be a labeling function such that for any fixed x P t0, 1un

and any y satisfying y ‰ x and Dtpxq X Dtpyq ‰ H, we
have that gpxq ‰ gpyq. Then there exists an integer α ď

2log |Dtpxq|`oplog mq such that for any y satisfying y ‰ x and
Dtpxq XDtpyq ‰ H, we have gpxq ı gpyq mod α.

Throughout the paper, we interchangeably represent a
binary vector as an integer and vice versa.

III. CORRECTING Itpcq
In this section we prove Lemma 2. Note that by

Lemma 1 we have that Itpzq P Rt,n´t and that Itpzq P
Bt,tpt´1qpItpxqqXBt,tpt´1qpItpx1qq. By virtue of this lemma,
the redundancy f pItpcqq can be used to correct Itpcq. The
proof of Lemma 2 follows similar arguments to those
in [17], which show that any sequence in Rt,n can be
protected from t deletions by using higher oder parities.
Here slight changes are made in order to deal with
additional substitutions.

Let δ “ tδ1, . . . , δtu Ă rns be a set of deletion indices
and σ “ tσ1, . . . , σtpt´1qu Ă rns be a set of substitution
indices, such that deleting bits pxi : i P δq and sub-
stituting bits pxi : i P σq in x result in z. Similarly,
let δ1 “ tδ11, . . . , δ1tu Ă rns and σ “ tσ1, . . . , σtpt´1qu Ă rns
be two sets such that deleting bits px1i : i P δ111q and
substituting bits px1i : i P σ111q in x1 result in z. Let y and y1

be the sequences obtained by substituting bits pxi : i P σq
in x and substituting bits px1i : i P σ111q in x1, respectively.
Then we have that z P Dtpyq X Dtpy1q. Moreover, the
sequence z can be obtained by deleting pyi : i P δq from y
or deleting py1i : i P δ111q from y1.

We now compute the difference x ¨mpeq´ x1 ¨mpeq and
show that it cannot be 0 for all e P r0, 2t2s unless x “ x1.
Following the same steps as in [17], let ∆ “ ti : yi “ 1u
and ∆1 “ ti : y1i “ 1u be indices of 1 entries in y
and y1 respectively. Let S1 “ ∆X δ and S2 “ ∆111 X δ111be
indices of the 1 entries, after deleting which in y and y1,
respectively, we have z. Then, the sets Sc

1 “ rnszS1
and Sc

2 “ rnszS2 are indices of the 1 entries that are not
deleted in y and y1 respectively. We have that

y ¨mpeq ´ y1 ¨mpeq “
ÿ

`P∆

p
ÿ̀

i“1

ieq ´
ÿ

`P∆1

p
ÿ̀

i“1

ieq

“

n
ÿ

i“1

p|S1 X ri, ns| ` |Sc
1 X ri, ns|

´ |S2 X ri, ns| ´ |Sc
2 X ri, ns|qie (2)

Sort all elements in sets δ, δ111, σ, and σ111 by p1 ď p2 ď

. . . ď p2t2 . Let p0 “ 0 and p2t2`1 “ n. The sets S1
and S2 satisfy the following properties, the proof of
which follows the same steps as in [17].

1) ´1 ď |Sc
1 X ri, ns| ´ |Sc

2 X ri, ns| ď 1 for i P rns.
2) For each interval ppj, pj`1s fi tpj ` 1, . . . , pj`1u, j P
r0, 2t2s, we have either |Sc

1X ri, ns| ´ |Sc
2X ri, ns| ď 0

for all i P ppj, pj`1s or |Sc
1 X ri, ns| ´ |Sc

2 X ri, ns| ě 0
for all i P ppj, pj`1s.

Let the sets S3 “ ∆Xσ “ ti : yi “ 1, i P σu and S4 “ ∆1X
σ111 “ ti : y1i “ 1, i P σ111u be the indices of substitutions that
flip 0 bits in x and x1, in order to get y and y1 respectively.
Let S5 “ σzS3 “ ti : yi “ 0, i P σu, and S6 “ σzS4 “ ti :
yi “ 0, i P σ111u be the indices of substitutions that flip 1
bits in x and x1, to get y and y1, respectively. Then,

x ¨mpeq ´ x1 ¨mpeq



“ y ¨mpeq ´ y1 ¨mpeq `
ÿ

`PS5

mpeq
` ´

ÿ

`PS6

mpeq
`

´ p
ÿ

`PS3

mpeq
` ´

ÿ

`PS4

mpeq
` q

“

2t2
ÿ

j“0

pj`1
ÿ

i“pj`1

p|Sc
1 X ri, ns| ´ |Sc

2 X ri, ns| ` kiqie, (3)

where ki “ |S1 X ri, ns| ´ |S2 X ri, ns| ` |S5 X ri, ns| ´ |S3 X

ri, ns| ` |S4 X ri, ns| ´ |S6 X ri, ns| for i P rns. Note that
for any interval ppj, pj`1s, j P r0, 2t2s, the number ki
is constant for all i P ppj, pj`1s. Let si “ |Sc

1 X ri, ns| ´
|Sc

2 X ri, ns| ` ki, then it follows from Property (1) and
Property (2) that si is either negative or non-negative for
all i P ppj, pj`1s for each j P r0, 2t2s.

Next, we show that x ¨mpeq´x1 ¨mpeq cannot be zero for
all e P r0, 2t2swhen x ‰ x1. Otherwise, define a vector v “
pv0, . . . , v2t2q P t´1, 1u2t2`1 by

vj “

#

´1, if si ă 0 for some i P ppj, pj`1s

1, else.
.

and a p2t2 ` 1q ˆ p2t2 ` 1q matrix A by Ae,j “
řpj

i“pj`1 |si|ie for e, j P r0, 2t2s. Then according to Eq. (3),

we have that
ř2t2

j“0 Ae,jvj “ 0, e P r0, 2t2s, if x ¨mpeq ´

x1 ¨mpeq “ 0 for all e P r0, 2t2s. This implies the linear
equation Av “ 0 has a solution v with no 0 entry. The
remaining steps are the same as in [17]. Let j1, . . . , jQ
be the indices of non-zero columns of A, and B be the
submatrix of A by selecting the intersection of the first Q
rows and the non-zero columns of A. Then the linear
equation Bpvj1 , . . . , vjQq “ 0 has a non-zero solution,
which is impossible since by multi-linearity of the de-
terminant, we can prove that the determinant |B| ą 0.
Therefore, x ¨mpeq ´ x1 ¨mpeq “ 0 for e P r0, 2t2s only
when A is a zero matrix, which implies that

si “ |Sc
1 X ri, ns| ´ |Sc

2 X ri, ns| ` ki

“ |ti : xi “ 1u X ri, ns| ´ |ti : x1i “ 1u X ri, ns| “ 0,

for i P rns. Then, ti : xi “ 1u “ ti : x1i “ 1u and thus x “
x1.

Finally, we show that if f pcq “ f pc1q, then x ¨
mpeq ´ x1 ¨ mpeq “ 0 for e P r0, 2t2s. Since z P

Bt,tpt´1qpxq X Bt,tpt´1qpx
1q, it follows that pzi, . . . , zn´tq P

Bt,tpt´1qppxi, . . . , xnqqXBt,tpt´1qppx1i , . . . , x1nqq for i P rn´ ts.
Hence, we have that ´t2 ď |ti : xi “ 1uX ri, ns|´ |ti : x1i “
1u X ri, ns| ď t2, and that

|x ¨mpeq ´ x1 ¨mpeq| ă t2ne`1.

Therefore, if f pcq “ f pc1q, we have that x ¨mpeq ´ x1 ¨
mpeq ” 0 mod t2nn`1, which implies that x ¨mpeq ´ x1 ¨
mpeq “ 0, for e P r0, 2t2s.

IV. CORRECTING Iwpcq GIVEN Iw`1pcq
In this section we prove Lemma 3. The idea is to

notice that given Iw`1pcq, the sequence Iwpcq can be
determined by the first 1 entry in Iwpcq after each 1 entry
in Iw`1pcq, w P rt´ 1s. Specifically, let

pπw`1
1 , πw`1

2 , . . . , πw`1
n1 q

be the indices of the 1 entries in Iw`1pcq such that πw`1
1 ă

πw`1
2 ă . . . ă πw`1

n1 . Let

τw
i “ mintj : j ą πw`1

i , Iwpcqj “ 1 or j “ n` 1u

for i P r0, n1s, where πw`1
i “ 0 when i “ 0. We have the

following proposition.

Proposition 1. The sequence Iwpcq can be determined
by pπw`1

1 , πw`1
2 , . . . , πw`1

n1 q and pτw
0 , τw

1 , . . . , τw
n1q, for w P

rt´ 1s.

Proof. Note that the 1 entries of Iwpcq in the inter-
val pπw`1

i , πw`1
i`1 s are spaced evenly with distance w in

the interval rτw
i , πw`1

i`1 s, for i P r0, n1s, where πw`1
i`1 “ n`1

if i “ n1. Otherwise there is an additional one entry
in Iw`1pcq in the interval pπw`1

i , πw`1
i`1 q fi tπw`1

i `

1, . . . , πw`1
i`1 ´ 1u, which contradicts to the definition

of pπw`1
1 , . . . , πw`1

n1 q.

From Proposition 1, it suffices to protect the in-
dices pτw

0 , . . . , τw
n1q, in order to recover Iwpcq. For w P

rt´ 1s, let

Hwpcq “ RS2twppτ
w
0 ´ πw`1

0 , . . . , τw
n1 ´ πw`1

n1 qq,

where RS2twppτ
w
0 ´ πw`1

0 , . . . , τw
n1 ´ πw`1

n1 qq is the redun-
dancy of the Reed-Solomon code that corrects 2tw sub-
stitution errors in the sequence pτw

0 ´ πw`1
0 , . . . , τw

n1 ´

πw`1
n1 q, with entries τw

i ´ πw`1
i , i P r0, n1s. The size

of Hwpcq is at most 4tw log n bits.
In the following we present the decoding procedure

that recovers Iwpcq, given d P Dtpcq, Iw`1pcq, and Hwpcq,
for any w P rt´ 1s.

1) Initialization: Let a P rnsn
1`1 be a vector, where n1

is known given Iw`1pcq.
2) Step 1: For each i P r0, n1 ´ 1s, if there exist two

numbers pw`1
i P rπw`1

i ´ t, πw`1
i s and pw`1

i`1 P

rπw`1
i`1 ´ t, πw`1

i`1 s such that Iw`1pdqpw`1
i

“

Iw`1pdqpw`1
i`1

“ 1 and pw`1
i`1 ´ pw`1

i “ πw`1
i`1 ´ πw`1

i ,
let kw

i “ minjąpw`1
i ,Iwpdqj“1 j be the first 1 entry

in Iwpdq after Iwpdqpw`1
i

, where 1wpdqj “ 1 when j “
n´ t` 1. Let ai “ kw

i ´ pw
i . Else let ai “ 0.

3) Step 2: Apply the Reed-Solomon decoder on a to
recover pτw

0 ´ πw`1
0 , . . . , τw

n1 ´ πw`1
n1 q. Recover pτw

0 ,
. . . , τw

n1q, and Iwpcq according to Proposition 1.
4) Step 3: Output Iwpcq.

We now show that the above procedure decodes Iwpcq
correctly, w P rt ´ 1s. According to Lemma 1, The



sequence Iwpdq can be obtained from Iwpcq after t dele-
tions and at most tpw ´ 1q substitutions. Note that for
each i P r0, n1s, we have that ai “ τw

i ´ πw`1
i , if no dele-

tion or substitution occurs in the interval rπw`1
i , πw`1

i`1 s

in Iwpcq, where πw`1
i`1 “ n if i “ n1. Since a dele-

tion or a substitution occurs in at most two adjacent
intervals rπw`1

i , πw`1
i`1 s and rπw`1

i`1 , πw`1
i`2 s, t deletions

and tpw ´ 1q substitutions cause at most 2tw symbol
errors ai ‰ τw

i ´ πw`1
i in a. Hence the sequence pτw

0 ´

πw`1
0 , . . . , τw

n1 ´ πw`1
n1 q, and thus pτw

0 , . . . , τw
n1q can be re-

covered given Hwpcq. Finally, according to Proposition 1,
the sequence Iwpcq can be recovered, w P rt´ 1s.

The complexities for computing Hwpcq and decod-
ing Iwpcq are dominated by encoding and decoding the
Reed-Solomon code and are polynomial.

V. ENCODING/DECODING

In this section we describe the encoding and decoding
procedures and prove Theorem 1. For any c P t0, 1un,
define the function

gpcq “ p f pItpcqq, H1pcq, H2pcq, . . . , Ht´1pcqq.

We first show that gpcq is a t-deletion correcting labeling
for c. For any length n´ t subsequence d of c, according
to Lemma 1, we have that Iwpdq P Bt,tpw´1qpIwpcqq
for w P rts. In particular, we have that Itpdq P

Bt,tpt´1qpItpcqq. Since Itpdq P Rt,n´t, it follows from
Lemma 2 that f pItpcq ‰ f pItpc1qq for any c1 satisfy-
ing Itpdq P Bt,tpt´1qpIwpc1qq. Hence, the sequence Itpcq
can be recovered, given f pItpcqq and d. According to
Lemma 3, every sequence Iwpcq can be recovered us-
ing Hwpcq, Iw`1pcq, and d. Hence, after knowing Itpcq,
the sequence c “ I1pcq can be recovered by successively
decoding Iwpcq, from w “ t´ 1 to w “ 1.

The size of gpcq is R “ rpt2 ` 1qp2t2 ` 1q ` 2t2pt ´
1qs log n ` oplog nq, which is greater than Opt log nq.
By applying Lemma 4, there exists an integer α P

r2log |Dtpcq|`oplog nqs “ r22t log n`oplog nqs such that gpcq ı
gpc1q mod α for any c1 P Dtpcq. Let

gcpcq “ pgpcq, αq.

Then gcpcq is a t-deletion correcting hash for c of
size N1 “ 4t log n` oplog nq. Let

Hashtpcq “ pgcpcq, Rept`1pgcpgcpcqqqq,

where Rept`1pgcpgcpcqqq is the t ` 1 fold repetition
of gcpgcpcqq, of length N2 “ 4t log N1 ` oplog N1q “

4tpt` 1q log log n` oplog nq. The size of Hashtpcq is N1`

N2 “ 4t log n` oplog nq. We now show that pc, Hashtpcqq
is a t-deletion correcting code. For any length n `
N1 ` N2 ´ t subsequence z of pc, Hashtpcqq, we have
that pzn`N1`1, . . . , zn`N1`N2´tq is a length N2 ´ t sub-
sequence of Rept`1pgcpgcpcqqqq, which is a t-deletion
correcting code. Therefore gcpgcpcqq can be recovered.

In addition, pzn`1, . . . , zn`N1´tq is a length N1´ t subse-
quence of gcpcq. Since gcpgcpcqq is a t-deletion correcting
hash of gcpcq, the hash gcpcq can be recovered. Finally,
note that pz1, . . . , zn´tq is a length n ´ t subsequence
of n, we can use gcpcq to recover c. The decoding of c
from gcpcq is done using brute force, over all sequences c1

that satisfy d P Dtpc1q. The computing of gcpcq is done by
brute force, over sequences c1 P Dtpcq. Hence the encod-
ing and decoding complexities are Opn2t`1q and Opnt`1q

respectively.

VI. CONCLUSIONS AND FUTURE WORK

Motivated by the applications in document exchange,
we construct systematic t-deletion correcting codes that
achieve 4t log n ` oplog nq bits of redundancy, which is
optimal up to a constant. Our codes are capable of
correcting up to t deletion, insertion, and substitution
errors, and thus provide a document exchange scheme.
Our construction has encoding/decoding complexity
polynomial in n but exponential in t, which works
when t is a constant. It is intriguing, yet challenging,
to come up with encoding/decoding algorithms poly-
nomial in both n and t.
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